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Abstract

An ever-increasing number of prediction models is published every year in different medical special-
ties. Prognostic or diagnostic in nature, these models support medical decision making by utilizing one
or more items of patient data to predict outcomes of interest, such as mortality or disease progression.
While different computer tools exist that support clinical predictive modeling, I observed that the state
of the art is lacking in the extent to which the needs of research clinicians are addressed. When it
comes to model development, current support tools either 1) target specialist data engineers, requiring
advanced coding skills, or 2) cater to a general-purpose audience, therefore not addressing the specific
needs of clinical researchers. Furthermore, barriers to data access across institutional silos, cumber-
some model reproducibility and extended experiment-to-result times significantly hampers validation
of existing models. Similarly, without access to interpretable explanations, which allow a given model
to be fully scrutinized, acceptance of machine learning approaches will remain limited. Adequate tool
support, i.e., a software artifact more targeted at the needs of clinical modeling, can help mitigate the
challenges identified with respect to model development, validation and interpretation. To this end, I
conducted interviews with modeling practitioners in health care to better understand the modeling
process itself and ascertain in what aspects adequate tool support could advance the state of the art.
The functional and non-functional requirements identified served as the foundation for a software
artifact that can be used for modeling outcome and risk prediction in health research. To establish the
appropriateness of this approach, I implemented a use case study in the Nephrology domain for acute
kidney injury, which was validated in two different hospitals. Furthermore, I conducted user evalua-
tion to ascertain whether such an approach provides benefits compared to the state of the art and the
extent to which clinical practitioners could benefit from it. Finally, when updating models for external
validation, practitioners need to apply feature selection approaches to pinpoint the most relevant
features, since electronic health records tend to contain several candidate predictors. Building upon
interpretability methods, I developed an explanation-driven recursive feature elimination approach.
This method was comprehensively evaluated against state-of-the art feature selection methods. There-
fore, this thesis’ main contributions are three-fold, namely, 1) designing and developing a software
artifact tailored to the specific needs of the clinical modeling domain, 2) demonstrating its application
in a concrete case in the Nephrology context and 3) development and evaluation of a new feature
selection approach applicable in a validation context that builds upon interpretability methods. In
conclusion, I argue that appropriate tooling, which relies on standardization and parametrization, can
support rapid model prototyping and collaboration between clinicians and data scientists in clinical
predictive modeling.
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Zusammenfassung

Die Zahl der jährlich veröffentlichten Vorhersagemodelle in verschiedenen medizinischen Fachrichtun-
gen nimmt stetig zu. Solche prognostischen oder diagnostischen Modelle helfen bei der medizinischen
Entscheidungsfindung, indem sie zum Beispiel Vorhersagen zur Mortalität oder zum Krankheitsver-
lauf erlauben. Obwohl bereits Softwarewerkzeuge für die Entwicklung klinischer Vorhersagemodelle
existieren, genügt der Stand der Technik noch immer nicht den Anforderungen klinischer Wissen-
schaftler. So kommt es, dass aktuelle Softwarewerkzeuge zur Modellentwicklung entweder 1) auf die
Anforderungen von Datenwissenschaftlicher zugeschnitten sind und folglich Programmierkenntnis-
se voraussetzen, oder 2) zu generisch sind und somit den tatsächlichen Anforderungen klinischer
Wissenschaftler nicht gerecht werden. Überdies wird die Reproduzierbarkeit der Modelle sowie die
Durchführung und Validierung von Experimenten durch verteilte Datenbestände und Informationen,
sogenannte Datensilos, stark eingeschränkt. Ähnlich verhält es sich bei der Akzeptanz von Modellen
des maschinellen Lernens, welche ohne interpretierbare Erklärungen von Vorhersagen kaum gegeben
sein dürfte. Eine auf diese Anforderungen klinischer Modellbildung ausgerichtete Softwarelösung
kann dabei helfen, die identifizierten Herausforderungen bezüglich Modellentwicklung, -validierung
und -interpretation zu bewältigen und die Akzeptanz und Nutzung unter Klinikern zu stärken. Um
den Modellierungsprozess zu verstehen und zu eruieren, in welchem Ausmaß eine angemessene Soft-
warelösung den Stand der Technik voranbringen könnte, wurden im Zuge dieser Arbeit Interviews
mit praktizierenden Modellierern im Gesundheitsbereich geführt. Daraus leiten sich funktionale und
nichtfunktionale Anforderungen ab, die als Grundlage eines Softwareartefaktes für die Modellierung
von Outcome- und Risikovorhersagen in der Gesundheitsforschung verwendet wurden. Um die Eig-
nung meines Ansatzes zu verifizieren, habe ich den Anwendungsfall „akutes Nierenversagen“ im
Bereich der Nephrologie in zwei verschiedenen Krankenhäusern betrachtet und validiert. Darüber
hinaus wurde eine Nutzerevaluierung durchgeführt um herauszufinden, ob ein solcher Ansatz im
Vergleich zum Stand der Technik Vorteile bietet und inwieweit klinische Praktiker davon profitieren
können. Außerdem müssen praktizierende Kliniker bei der Aktualisierung von Modellen für die exter-
ne Validierung Ansätze zur Merkmalsselektion anwenden, da elektronische Gesundheitsakten in der
Regel mehrere erklärende Merkmale enthalten. Aufbauend auf Methoden zur Interpretierbarkeit habe
ich einen erklärungsorientierten rekursiven Eliminierungsansatz entwickelt. Dieser neue Ansatz wur-
de umfassend mit Standardverfahren der Merkmalsselektion verglichen. Daraus leiten sich folgende
Forschungsbeiträge dieser Arbeit ab: 1) Entwurf und Entwicklung eines Softwareartefakts, welches auf
die speziellen Bedürfnisse der klinischen Modellierungsdomäne zugeschnitten ist, 2) Demonstration
seiner Anwendbarkeit für das konkrete Fallbeispiel „akutes Nierenversagen“ und 3) Entwicklung
und Evaluierung eines neuen, auf Interpretierbarkeitsmethoden basierenden Ansatzes, zur Merkmals-
selektion in einem Validierungskontext. Zusammenfassend ist zu folgern, dass ein geeignetes auf
Standardisierung und Parametrisierung gestütztes Tool die schnelle prototypische Entwicklung und
die Zusammenarbeit von Klinikern und Datenwissenschaftlern an klinischen Vorhersagemodellen
unterstützen kann.
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Resumo

Um número cada vez maior de modelos preditivos é publicado a cada ano em diferentes especialidades
médicas. Prognósticos ou diagnósticos em natureza, esses modelos apoiam a tomada de decisão
médica, utilizando dados de pacientes para prever resultados de interesse, tais como mortalidade
ou progressão da doença. Embora existam diferentes ferramentas computacionais que suportam
a modelagem preditiva clínica, observei que falta ainda ao estado da arte atender às necessidades
de pesquisadores clínicos. Quando se trata de desenvolvimento de modelos, as ferramentas de
apoio atuais ou 1) visam engenheiros de dados especializados, exigindo habilidades avançadas de
programação, ou 2) atendem a um público geral, não focando, portanto, nas necessidades específicas de
pesquisadores clínicos. Além disso, barreiras ao acesso aos dados em silos institucionais, dificuldade
na reprodutibilidade dos modelos e tempos prolongados de experimentação e resultado dificultam
significativamente a validação dos modelos existentes. Da mesma forma, sem acesso a explicações
interpretáveis, que permitam que um determinado modelo seja totalmente escrutinado, a aceitação das
abordagens de aprendizado de máquina permanecerá limitada. O suporte adequado de ferramentas,
ou seja, um artefato de software mais direcionado às necessidades da modelagem clínica, pode ajudar
a mitigar os desafios identificados com relação ao desenvolvimento, validação e interpretação de
modelos. Para este fim, realizei entrevistas com profissionais de modelagem na área de saúde para
entender melhor o processo de modelagem em si e verificar em que aspectos o suporte adequado de
uma ferramenta poderia fazer avançar o estado da arte. Os requisitos funcionais e não funcionais
identificados serviram como base para um artefato de software que pode ser usado para modelagem
de resultados e previsão de risco em pesquisas em saúde. Para estabelecer a adequação dessa
abordagem, implementei um estudo de caso de uso no domínio da Nefrologia para lesão renal aguda,
que foi validado em dois hospitais diferentes. Além disso, realizei uma avaliação com usuários para
verificar se tal abordagem oferece benefícios em comparação com o estado da arte e até que ponto os
profissionais clínicos poderiam se beneficiar com ela. Finalmente, ao atualizar modelos para validação
externa, os profissionais precisam aplicar abordagens de seleção de preditores para identificar aqueles
mais relevantes, já que os registros eletrônicos de saúde tendem a conter vários possíveis candidatos.
Com base em métodos de interpretabilidade, desenvolvi uma abordagem de eliminação recursiva de
preditores orientada por explicações. Este método foi avaliado de forma abrangente em relação aos
métodos de seleção de preditores mais modernos. Portanto, as principais contribuições desta tese são
três, a saber: 1) projetar e desenvolver um artefato de software adaptado às necessidades específicas
do domínio da modelagem clínica, 2) demonstrar sua aplicação em um caso concreto no contexto
da Nefrologia e 3) desenvolvimento e avaliação de uma nova abordagem de seleção de preditores
aplicável em um contexto de validação que se baseia em métodos de interpretabilidade. Em conclusão,
argumento que uma ferramenta apropriada, que se baseia na padronização e parametrização, pode
apoiar a prototipagem rápida de modelos e a colaboração entre profissionais clínicos e cientistas de
dados na modelagem preditiva clínica.
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1. Introduction

"A man on a thousand mile walk has to forget his goal and say to himself every
morning, ’Today I’m going to cover twenty-five miles and then rest up and sleep’."

—Leo Tolstoy, War and Peace (1869)

How useful are computers in a healthcare setting? Undoubtedly, information sys-
tems have dramatically impacted the way care is delivered to patients worldwide. While

initially restricted to automating administrative routines such as billing, now Electronic Health Record
(EHR) support a wide range of core processes in patient care, leaving behind a massive data footprint.
In this context, a similar question arises: can EHR data be useful to help improve care delivery to
patients? To what extent can mathematical models learn underlying patterns in this data footprint
which provide hints to healthcare providers, e.g., helping to identify deadly complications before there
are obvious signs of it? This is the driving question of this thesis and provides the needed framing for
the issues that will be dealt with in the subsequent chapters.

1.1. Context

The field concerned with answering the preceding question is called clinical predictive modeling. It
deals with applying and developing mathematical-analytical tools to provide risk estimates of patient
risk for either a) the presence of a disease (diagnosis) or b) future outcome (prognosis) [4]. Clinical
Prediction Models (CPMs), prediction rules, clinical scores or more specifically prognostic models
or simply models are “tools for helping decision making that combine two or more items of patient
data to predict clinical outcomes" [5]. Such tools can be based on simple scoring systems, logistic
regression or more sophisticated modeling algorithms, such as neural networks. We therefore use the
term ‘model’ or CPM for a clinical instrument with pre-defined inputs and outputs as opposed to a
’modeling algorithm’, a general-purpose mathematical construct that can be used to develop CPMs.

CPMs are widely used in the medical context. Examples of application areas include predicting
patient outcomes such as mortality and hospital readmission, as well as deriving risk profiles [6]. Such
models can be either diagnostic or prognostic in nature, the former referring to models which aim to
identify specific patient conditions while the latter aims to predict how patients are likely to respond to
a given treatment or to pinpoint disease progression [7]. They sit at the cornerstone of modern health
care provision, spanning across different areas of medicine. For example, in public health, predictive
models help decision makers shape public policies, e.g., to stave off epidemics building on seasonal
disease trends. In intensive care, prognostic models support physicians in devising appropriate care
plans according to risk profiles. By way of illustration, the widely employed clinical score for intensive
care, Acute Physiology and Chronic Health Enquiry (APACHE-II), is an early instance of a clinical
score which found ample acceptance in clinical practice, being included in guidelines for patient
care [8].
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1. Introduction

1.2. Motivation

While predictive modeling indeed shows much promise for clinical practice, its adoption remains
limited, including current research calling into question whether there is any benefit at all to the
surge in clinical models, provokingly deeming ‘most clinical scores useless’ [9]. Dekker et al. outline
three core reasons for this skepticism: (1) flaws and pitfalls in model development, (2) flaws and
pitfalls in model validation and (3) lack of impact studies, i.e., assessing their use in Randomized
Controlled Trials (RCTs). In addition to Dekker et al.‘s assessment, I identify the opaqueness and
lack of interpretability of ‘black-box’ Machine Learning (ML) algorithms as a further factor hindering
the adoption of CPMs. As such, I am primarily concerned with challenges regarding development,
validation and interpretation of prediction models, a selection of which is presented below.

1.2.1. Need for Standardization in Development and Validation

For clinical prediction modeling using ML, research clinicians must undergo a lengthy process of 1)
data extraction and preparation 2) modeling and 3) validation. Because these researchers are often
neither statisticians nor machine learning experts, important methodological steps are ignored or not
reported at all, with considerable inconsistency, e.g., in the reporting of performance metrics [10]. The
alternative is to ‘outsource’ development to data experts, but these often lack the needed medical
knowledge and might develop models that are sound statistically but questionable from a clinical
perspective. Besides, model reporting usually is limited to common metrics, such as sensitivity
and specificity, ignoring those concerned with calibration and clinical usefulness. Given this lack of
transparency in methods and reporting, reproducibility is severely hampered. Consequently, to date,
not only is the development of clinical prediction models a time-consuming endeavor but it is also
potentially riddled with flaws, both from a clinical and methodological standpoint [11]. This is so
because the whole process of developing clinical predictive models is highly complex, with several
different parameters to be chosen and tuned.

Furthermore, even if the CPMs developed were clinically and methodologically sound, they would
have to be externally validated, that is, tested on a population other than the one they were initially
trained on. Only then could it be demonstrated satisfactorily that the models developed are generally
applicable and not biased. Since institutions cannot share patient data with the outside unless
cumbersome legal and technical hurdles are worked out, most models developed end up not being
validated externally and ultimately remain within the confines of one single institution, with limited
generalizability [10]. Worryingly, model validation seldom takes place at all. Evidence for this claim
is a review of models for Acute Kidney Injury (AKI), out of 53 CPMs only five were externally
validated [10]. Reasons for this are manifold, but most prominently, barriers to accessing data, which
often lies behind institutional barriers, preclude the very possibility of a validation study in the first
place.

Therefore, having a standardized approach which makes it possible to select from a wide range
of configurable combinations can make it easier to develop proof-of-concept models which are more
transparent and amenable to scrutiny. By the same token, if patient data does not need to leave the
respective clinic, bringing algorithms to the data, not data to the algorithms, these barriers can be
mitigated. As such, the first research question of this thesis is thus:

Research Question One

To what extent can the development and validation of clinical models be standardized with
software support across institutional barriers?

2
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1.2.2. Need for Model Interpretation to Uncover Biases

CPMs are routinely developed by means of commercial statistical packages such as SAS, SPSS and
Stata. However, an increasing number of clinical researchers and data mining practitioners are turning
to ML methods when developing prediction models. A case in point is the field of Nephrology, in
which a host of research papers exploring the potentials of ML for predictive applications has been
published [12]. While there is an on-going debate on whether ML models are preferable to ‘non-ML’
models, particularly where interpretability is concerned [13], advances in ML research warrant the
exploration of such models, particularly deep learning approaches [14]. As such, methods which help
to shed light onto black-box ML models are required if these models are to be accepted in clinical
research.

Therefore, models should allow scrutiny by medical experts, because good model performance does
not exclude the existence of data artifacts, i.e., characteristics which do not belong to the underlying
population, but rather emerge for different, unrelated reasons. Therefore, to overcome a lack of trust,
a prediction model should not only be internally but also externally validated to ensure the results
achieved upon derivation hold true for a diverse patient population. In particular, ML models are
specially prone to ‘learning’ dataset-specific characteristics which might fail to generalize on a wide
range of cohorts, further compounding the issue of lack of trust [15].

However, model interpretation is often considered an after-thought, and not taken into account
and/or reported in clinical modeling studies. This is specially of concern when it comes to ML-based
models. Case in point: if not audited properly, a well-performing model trained to diagnose cancer
could have learned the manufacturer’s label on the image, rather than the actual cancer features’
themselves. As such, the second research question of this work is thus posed:

Research Question Two

To what extent can the use of interpretability methods on black-box prediction models help
illuminate model biases?

1.2.3. Need for Support in Choosing Model Features

The data footprint left by care processes in the EHR is a blessing and a curse at once: on the one hand,
as more data is generated, the opportunities for finding unexpectedly useful patterns increase; on the
other, the features available for modeling increase substantially, which can lead to models which overfit
the data, a phenomenon termed ‘the curse of dimensionality’ [16]. Here, feature selection strategies
can support modelers to identify the most relevant predictors for any given model, reducing bias. This
is specially important for external validation studies, since a good model should perform well not
only on its original population, but also on unrelated cohorts. Since it is common for the validation
cohort not to have all the necessary features available, the researcher needs to choose which features to
keep and which to discard, i.e., update the original model, so as to achieve good performance with the
fewest number of features possible on both cohorts. However, it is unclear to what extent conventional
feature selection methods can be useful in such validation scenarios for clinical predictive modeling,
since extant work so far has focused primarily on other types of high-dimensional data, such as gene
expression [17].

Furthermore, instead of conventional feature selection methods, such as statistical tests, a promising
alternative is the use of interpretability methods to achieve the same goal: simpler models that perform
well in the original and in the validation cohort. The rationale for this is as follows: the interpretability
methods provide insight into how the model operates. If this ‘knowledge’ acquired by the model
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reflects underlying properties of the task, one could reasonably expect that these properties would be
reflected on the validation cohort as well. In this thesis, I put this hypothesis to test. Therefore, my
third research question is thus derived:

Research Question Three

To what extent can interpretability methods be useful in updating models in validation studies?

1.3. Research Objectives

The overall objective of this thesis is to demonstrate how the development, validation and interpretation
of CPM can be standardized. Then demonstrate it in a concrete use case and evaluate to what extent
interpretability approaches can be useful in illuminating biases and helping to update models in
validation studies. To achieve this overall goal, the following objectives have been identified:

• Objective 1: Identify functional and non-functional requirements for a research prototype to
support standardized clinical predictive modeling.

• Objective 2: Develop a research software prototype which implements the requirements identi-
fied.

• Objective 3: Demonstrate the applicability and feasibility of components of the research software
prototype on a selected clinical modeling task.

• Objective 4: Assess to what extent the evaluation, validation and interpretation of clinical models
can illuminate model biases.

• Objective 5: Evaluate to what extent the use of interpretability methods can be useful in updating
predictive models in an external validation cohort.

1.4. Contributions

In answering the research question and pursing the objectives laid-out previously, I developed three
contributions, spanning the dimensions of software platform, case study and method evaluation, listed
below.

Software Platform. The first contribution is concerned with a working research software platform
that supports the predictive modeling process with respect to the dimensions of model development,
validation and interpretation. To that extent, we needed to identify the needs of practitioners in the
clinical modeling process in terms of actors, tasks and challenges. Once mapping has been carried
out, functional and non-functional requirements were identified, which, in turn, informed the actual
artifact building. The prototype consists of a fully function web application along with a Python
library that automates and parameterizes routine tasks in clinical predictive modeling.

Case Study. We demonstrate the utilization of components of the software platform in a concrete
case study to predict AKI in the context of heart surgery. AKI affects a significant number of cardiac
surgery patients, being associated with higher mortality and complication rates [18]. The model
was developed and validated using data from three different institutions. The model developed
is throughly discussed, including its development, validation and interpretation. In particular, we
demonstrate how the interpretability methods can help practitioners to uncover potential model biases.
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Method Evaluation. The use of interpretability methods on ML-models helps to shed light on their
behavior, e.g., helping to highlight important features. Identifying such important features can also
help to reduce complexity of clinical models, for instance using the method called recursive feature
elimination. We extended this method by combining the inputs of different interpretability methods
into a composite score, and applying the models in a validation cohort. This method was compared
to other standard feature selection methods with respect to its performance in the concrete case study.

1.5. Scope

The predictive modeling discussed in this work is strictly focused on the class of tasks in machine
learning regarded as classification problems in the field of supervised learning. More specifically, we
tackle binary classification task, where the output of the predictive models is a probability for presence
or not of a disease or risk probability. As such, problems involving predicting a continuous variable,
i.e., regression tasks, while also important in the clinical context, are not object of this work.

This was a conscious choice because 1) multi-class tasks can be easily transformed into equivalent
binary classification tasks using, e.g., one-hot encoding and 2) binary classification tasks cover a wide
range of use cases in medicine. Furthermore, in this thesis, we do not tackle deep learning algorithms,
since the core object of analysis are not the algorithms themselves, but rather the process of clinical
predictive modeling itself. Nevertheless, the topics discussed in this thesis, particularly those referring
to interpretation could be also extended to deep learning algorithms.

1.6. Outline

This thesis is structured as follows. Chapter 2 provides the necessary background, considering the
modeling process, modeling algorithms, model performance metrics, and interpretability. This sets
the common ground for the three contributions outlined above, namely, research software platform,
case study and method evaluation, in Chapter 3, Chapter 4 and Chapter 5 respectively. Each of
these chapters has its own listing of methods, results and discussion, therefore I deliberately did not
include an extra ‘Methods’ chapter, since it would lead to unnecessary repetition. Finally, Chapter 6

provides a summary of the contributions achieved with this work, while revising research questions
and objectives, as well as delineates future avenues of research.

Table 1.1.: Overview of top-level thesis structure, including research questions, objectives, chapters and contribu-
tions to help navigate this document. Abbreviation: RQ=Research Question, RO=Research Objective.

Question Objective Chapter Contribution Pages

RQ1

RO1

Chapter 3 Software Platform 20 - 56

RO2

RQ2

RO3

Chapter 4 Case Study 58 - 84

RO4

RQ3 RO5 Chapter 4 Method Evaluation 86 - 102
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2. Background

"Let us not forget that the causes of human actions are usually infinitely more
complex and more various than we are in the habit of explaining them afterwards,
and are seldom clearly outlined."

—Fyodor Dostoyevsky, The Idiot (1879–80)

How are clinical predictive models born? In this chapter, the required background con-
cerned with the field of clinical predictive modeling with respect to development, validation

and interpretation will be covered in greater depth. This background knowledge helps to frame this
work’s contributions.

2.1. Defining Clinical Predictive Model

Model development entails the activities concerned with answering a given medical question by means
of mathematical tools to diagnose a condition or predict an outcome using patient-related data. As
such, models are said to be either diagnostic or prognostic in nature [4]. In this work, we are primarily
concerned with prognostic models, more specifically the ones in which the outcome of interest is
binary, which is often employed in clinical research [19].

Formally, given a number of patient characteristics, such as demographics, vitals and medications,
represented by a feature vector X ∈ (x1, x2, ..., xn), a model is defined by a function f that maps those
features to the likelihood or probability y′ of a patient outcome or diagnosis y, often a binary marker,
as defined in Equation 2.1:

f (X) = y′ | y′ ∈ [0...1] (2.1)

2.2. Clinical Predictive Modeling Process

Different publications have set out to outline a general framework for this purpose [4, 6, 7]. Building
on the intersections of previous work and the insights gleaned from expert interviews, I derived a
summarized view of the process, depicted in Figure 2.1 using the Business Process Modeling Notation
(BPMN) 2.0 notation [20].
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2. Background

The following sections provide a summarized overview of the different process steps identified.

2.2.1. Preparation

The goal of clinical modeling is to develop an accurate and clinically useful instrument. To this end,
critical questions have to be addressed before modeling itself can start. First, the endpoints to be
analyzed, such as an event (mortality, readmission, etc.) or disease (stroke, liver injury, etc.) must be
defined. Second, researchers must pinpoint the target population, that is, for what type patients the
model will be applied (elderly patients, diabetic patients, chronic cases and the like). Third, target
users of the model must be specified, defining, e.g., if it is target at general practitioners, at nursing
staff, specialist physicians, etc. The answer to those questions ultimately guide the data selection step
and also influences how variables shall be transformed prior to modeling [6]. For example, models
targeted at specialist users may make use of advanced biomarkers, while those aimed at low-threshold
clinical settings could rely on more readily available parameters.

2.2.2. Dataset Selection

Once the initial requirements have been established in the preparation phase, one needs to analyze
available data sources with respect to their suitability to answer the questions defined. While primary
data is usually preferred, i.e., data collected specifically for the given purpose, often clinical researchers
have to rely on secondary sources, i.e., administrative data, for modeling. Further, depending on the
purpose of the model, that is, diagnosis or detection vs. prognosis or future incidence, different types
of cohorts are applicable. In general, diagnostic models can be developed with cross-sectional data,
while prognostic models usually require longitudinal cohort data [6]. In addition, apart from ensuring
that the modeling cohort is representative of the target population, a distinction must be made between
development and validation datasets. Ideally, to properly assess generalizability, validation cohorts
should come from external study populations. When these are not available, a subset of the data at
hand can be held out for internal validation, e.g., via bootstrapping (sampling with replacement).

2.2.3. Predictor Handling

Selected datasets often possess a high number of candidate predictors. To ensure the final model
is user-friendly, these must be carefully assessed with respect to statistical significance levels, e.g.,
p-values, as well as cross-correlation between predictors, in which case a predictor does not add new
information. Different techniques for feature selection exist, such as t-tests, mutual information gain
or principal component analysis and should be applied at the researcher’s discretion. Furthermore, as
a rule, the predictors available in the selected datasets must be pre-processed prior to modeling. For
example, continuous predictors can be turned into categorical items or binarized. Similarly, different
categorical items might be combined into a binary predictor. Further, depending on the modeling
algorithm, numerical predictors should be normalized. Finally, clinical datasets are usually plagued
by missing data, which might comprise the model. Therefore, care must be taken to either 1) remove
from modeling predictors which are too often missing or 2) use appropriate imputation techniques to
mitigate this effect [6].

2.2.4. Model Generation

In this step, the clinical modeler tries out different models, aiming to find the that best fits the available
data. Published literature on clinical predictive modeling often makes use of logistic regression
and Cox proportional harzards model [10]. At the same time, machine learning approaches are
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2. Background

increasingly finding their way into this research area [21]. Regardless of the underlying modeling
algorithm, this task can be substantially time-consuming, since different predictor combinations should
be examined, i.e., using the full set of predictors or subsets by means of backward elimination or
forward selection [22]. In the case of machine learning algorithms, the problem is further compounded
by the need to optimize the algorithm’s hyperparameters, for example using techniques such as
random or grid search, a computationally expensive task [23]. Finally, even though this optimization
step might improve the model’s performance, it potentially increases its propensity to overfitting the
data. Overfit can be assessed by means of Akaike and/or Bayesian information criteria [24].

The ability to compare multiple candidate models side by side is vital for predictive modeling. In
a similar vein, models are usually iteratively developed, in multiple cycles with different versions. It
becomes necessary, therefore, to track changes to model parameters and underlying data/features
to allow for informed comparisons. In effect, such changes can only be tracked if the models can be
formally defined by means of a standard modeling language that supports a reproducible, machine-
readable specification.

2.2.5. Model Evaluation and Validation

The models thus trained need to be evaluated with respect to how well they accomplish the given task.
Likewise, results achieved must be validated, i.e., confirmed or dispelled, with a dataset not previously
seen by the model. When a subset of the derivation dataset itself is used for this purpose, validation is
said to be ‘internal’. Conversely, external validation is carried out on a dataset from a different cohort,
study or institution, which is the prefer ed approach to validate predictive models [10]. A number of
different standard metrics exist to evaluate and validate CPMs, most prominently discrimination and
calibration metrics. The first refers to a model’s ability to discriminate between an event taking place
or not (e.g. death) or between a diseased or healthy patient. Metrics such as sensitivity, specificity,
and Area Under the Receiver Operating Characteristic (AUROC) are frequently employed in this
context. The latter, calibration, refers to how well predicted risk matches observed risk for different
equally-sized risk deciles. This is an important dimension to assess, because even if a model presents
good discrimination metrics, it might overestimate risk for patients that actually present a low-risk
profile. Calibration is typically visualized by means of calibration or reliability curves [6].

To evaluate model performance, tools should enable practitioners to easily visualize a set of standard
metrics, such as AUROC, precision, recall for discrimination, as well as reliability curves and/or
Hosmer-Lemeshow test for calibration purposes. While internal validity can be established by using
the derivation cohort itself, external validity must be ensured, e.g., by providing an easy mechanism
to exchange predictive models across institutional barriers and the ability to update existing models
with the information of a new cohort.

2.2.6. Model Interpretation

While ML models potentially provide better discriminative performance when compared to linear
approaches such as logistic regression, they typically do not allow scrutiny by non-ML experts and
are therefore deemed to be black-box or present high opacity, a property arising from the internal
mechanics of certain algorithms [25]. It is essential for doctors to be able to scrutinize an algorithm’s
decision so as to allow the most appropriate course of action, particularly when expert intuition
disagrees with the model’s output [26]. As ML-experts develop ever more complex and accurate
models, the distance between clinic and the scientific computing servers grows ever wider. In effect, as
stated by Ridgeway “an interpretable model that is actually used is better than one that is more accurate
but sits on a shelf" [27]. Different approaches exist which are targeted at conferring interpretability
to existing black-box models [13]. Model interpretability can be achieved at the global and local level.
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The first refers to the relationship between target and predictors for the model as a whole, while the
second seeks to examine single prediction instances [15].

IT-support tools should provide intelligible explanations for its predictions. This is of particular im-
portance when it comes to ML-based algorithms, usually not easily interpretable. These explanations
can take the form of feature-based importances, which provide some degree of insight into a model’s
behavior by assigning different magnitudes (coefficients) to the model’s predictors.

2.2.7. Model Presentation

Finally, for actual use in clinical routine, models need to be properly presented, e.g., by means of an
easy to calculate score that can be readily operated by clinical users in the point of care. Regression
formulas, paper-based scores and nomograms are typically employed to this end. Increasingly often,
these clinical instruments are made available to practitioners in the form of mobile apps or are
calculated directly within clinical software. This is particularly relevant when it comes to ML-based
CPMs, given the usual larger numbers of predictors used and the more sophisticated mathematical
operations involved, which could be cumbersome or impractical to calculate manually [4].

Once models have been properly validated and interpreted, they can be considered for deployment.
IT-tools should enable practitioners to derive easy-to-use scores based on the models developed.
Ideally, the tool itself should provide the means to automatically calculate the prediction scores from
the model given the appropriate input. Furthermore, the tool should make it possible to seamlessly
integrate the model into existing clinical systems.

2.3. Modeling Algorithms

In the following sections, details on the modeling algorithms utilized throughout this thesis will be
provided. Indeed, researchers make use a number of modeling algorithms, such as logistic regression
or ML approaches, outlined below.

2.3.1. Logistic Regression

Logistic Regression (LR) is widely used for clinical prediction model development. It provides fast
training time and easy-to-interpret coefficients for each model feature. For the sake of illustration,
in a univariate logistic regression model, the probably that an input vector X can be assigned to the
default class (or y =1, i.e., AKI onset) is given by Equation 2.2 also known as logit function:

p(X) =
eβ0+β1X

1 + eβ0+β1X (2.2)

The parameters β0 and β1 need to be estimated via an optimization procedure. This algorithm seeks
to obtain coefficients βi for each input feature in order to produce a binary output while minimizing
the error between predicted and actual class membership using maximum-likelihood estimation [28].

Owing to its simplicity, however, LR tends to perform worse when compared to more sophisticated
algorithms such as Multilayer Perceptron (MLP) or Random Forest (RF). Critically, LR is built upon the
assumption of linearly correlated inputs and outputs. This is potentially an issue, since in a medical
context one cannot necessarily assume linear relationships.

Hyperparameters. One of the key hyperparameters to be tuned for LR refers to the regularization
strength. Model performance upon validation can be improved by penalizing large coefficients,
potentially reducing overfitting. As such, model sparsity is improved by a strong regularization,
typically defined as λ. Another key parameter to tune is the the type of penalty for the regularization,
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2. Background

namely L1 (lasso) or L2 (ridge). Since utilizing L1 penalty shrinks the coefficients of less importance
to zero, some features might be removed altogether, a desirable property when dealing with wide
datasets.

2.3.2. Decision Trees

Intuitively, a decision tree classifier seeks to define the best possible way to split a given training set in
two sets, such that these sets are as homogeneous as possible. In other words, such that they belong
to the same underlying ‘class’, e.g., such that all (or most) patients in any given set are diseased or
non-diseased, or positive or negative. The question then becomes how to define this ‘best split’ [29].
The choice of how to split a sample depends on how well a given feature separates – or discriminates
– between those two classes. Ideally, each of the sets should be ‘pure’, i.e., perfectly homogeneous: all
positive examples from one set should be contained in the other with no negative examples.

There are different choices on how to calculate node impurity, such as error rate (proportion of
‘wrong’ examples), entropy, derived from information theory [30], Gini index, or Gini impurity[31].
Considering a classification problem with a number of different classes C and i as a given class,
Equation 2.3 provides the Gini impurity G of a set, where p(i) is the class distribution probability of
class i. In practice, finding homogenous splits does not come easy: the trees are grown by recursively
testing different split criteria and assessing the impurity of the resulting splits or leaf nodes until a
desired stopping criteria is achieved or no more splitting is possible.

G =
C

∑
i=1

p(i) ∗ (1− p(i)) (2.3)

Hyperparameters. When modeling with decision trees, practitioners can, e.g., choose different im-
purity measures. Since trees can grow arbitrarily complex and thereby overfit the data, regularization
parameters can be applied, as such defining a maximum tree depth [32]. Also, a weight can be defined
for each of the classes, if one is considered to be more important, e.g., in the case where there is class
imbalance.

2.3.3. Gradient-boosting Decision Trees

Gradient Boosting Decision Trees (GBDT) are an ensemble classification approach, i.e., one in which
several simple classifiers are combined to tackle a complex task by majority voting. In this specific
case, the ensemble is made up of several small-depth decision trees, which are then trained in iterative
steps [32]. In binary classification using GBDT, the goal is to derive a function F to classify an input
vector X in an additive fashion, such that following the numerical optimization proposed by Jerome
Friedman [33]:

F∗(X) =
M

∑
m=0

fm(X) (2.4)

In Equation 2.4, fm are termed base learners, with f0(X) being an initial guess, chosen in such a way
as to miminize the aggregated loss while keeping the preceding base learner fixed. For GBDT, these
weak learners are tree stumps, i.e., tree with small depth, also termed ’tree stumps’. This process is
repeated iteratively using gradient descent. In each of the iterations, the influence of the new weak
learner can be modified by an weight factor, or gradient step size, or learning rate, before it is added
to the previous iteration [34].
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Hyperparameters. Given that GBDT rely on decision tree stumps as weak learners, they support
all the parameters that also apply to decision trees. The learning rate can also be fine-tuned for GBDT.
Smaller values for the learning rate, i.e., smaller than one, generally lead to a larger number of com-
posite trees, since the gradient descent procedure will need more iterations to converge. Additionally,
modelers can also define the highest number of invidual learners beforehand. This can be advisable
for very large datasets.

2.3.4. Random Forests

The RF algorithm builds an ensemble of multiple trees in order to get a more accurate and stable
prediction in comparison to an approach that relies on single decision tree. The ensemble’s constituent
trees utilize a random subset of the features available to split the nodes to be classified [32]. As a
result of ‘pooling’ or majority voting of individual predictions, characteristically, RF are less prone to
overfitting than regular decision trees. RF relies on bagging or bootstrap aggregation, i.e., sampling
with replacement, to select samples of the training data, in an effort to reduce variance in the prediction
function [35]. Hastie et al. formalize the concept in Algorithm 1 [35].

Given a set of constituent trees b where b ∈ {1, . . . , B}, we denote the overall class prediction of the
random forest r f over all B trees for input x by ĈB

r f (x). Accordingly, if we denote the class prediction

of the bth constituent tree by Ĉb(x), the classification output of the RF model is given by Equation 2.5:

ĈB
r f (x) = majority vote{Ĉb(x)}B

1 (2.5)

Algorithm 1: Training a Random Forest
Input: Training Data
Result: Ensemble of Trees
for b = 1 to B do

(a) Obtain bootstrap sample of size N from training data;

(b) Grow tree Tb to the bootstrapped data, applying these steps recursively, until minimum
node size nmin is reached:

i. Select m variables at random from the available p variables;

ii. Pick the best variable/split point among m;

iii. Split the node into two daughter nodes;

end
Return Ensemble of Trees {Tb}B

1 ;

Hyperparameters. The RF algorithm tends to perform well even without extensive tuning, what
may explain its wide popularity [35]. In addition to the usual hyperparameters for decision trees,
such as tree depth, the library employed exposes a number of hyperparameters that can be tuned
specifically for RF. They include, e.g., the number of constituent trees (or estimators), i.e., B from
Algorithm 1, number of variables m to split a node and the minimum number of leaves required to
split an internal node.
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Table 2.1.: Confusion matrix for the predictions of a binary classifier. A similar structure applies for non-binary
classifiers, with n sup 2 number of total cells, where n is the number of different labels.

Actual Outcome
Diseased Healthy

Predicted
Diseased TP FP
Healthy FN TN

2.4. Model Performance Metrics

Once models have been developed, their performance needs to be assessed by means of different
metrics. Roughly, one can distinguish between discrimination, calibration and clinical usefulness
metrics [36].

2.4.1. Discrimination

Discrimination helps researchers to assess the extent to which the model can discriminate between
patients that have will have the outcome from those that will not, i.e., True Positives (TPs) and True
Negatives (TNs), respectively. Any classifier is bound to make mistakes. As such, a model might
indicate a patient as sick who actually is not sick, i.e., a False Positive (FP) and conversely miss out on
a patient who is sick by labeling him not sick, i.e., a False Negative (FN). The relationship between TP,
TN, FP, FN is often illustrated by means of a so-called confusion matrix such as depicted in Table 2.1.

For binary classifiers, the combination of those indicators (TP, TN, FP, FN) gives rise to metrics such
as AUROC, precision, recall and F-1 scores which are routinely utilized for evaluating CPMs [36].

Sensitivity and Specificity. Sensitivity, also called recall, and True Positive Rate (TPR) can be under-
stood as a measure of completeness, i.e., to what extent are diseased patients correctly characterized
as such by the model? This metric of is particular interest in diagnostic models, since it quantifies the
percentage of disease patients correctly identified. It can be thus calculated:

Sensitivity =
TP

TP + FN
= 1− FNR (2.6)

Conversely, specificity or True Negative Rate (TNR), refers to the proportion of negatives correctly
labeled as such, i.e., how selective is the test? In other words, what percentage of healthy patients are
correctly deemed non-diseased by the model? This metric can be calculated as follows in Equation 2.7:

Speci f icity =
TN

TN + FP
= 1− FPR (2.7)

In practice, there is often a trade-off between sensitivity and specificity that must be weighted out
depending on the concrete scenario. A model with high sensitivity will be very good at ruling in
disease. As such, it is often desirable when the harms costs associated with a false positive are high,
e.g., screening programs in cancer. On the other hand, a highly specific model excels at ruling out
disease. As such, such tests are often employed after a highly sensitive test for confirmation, e.g., an
biopsy following a cancer screening [37]. It should be noted that both are independent of disease
prevalence.

Diagnostic Odds-Ratio. Given the often necessary trade-off between sensitivity and specificity,
a global measurement of model/test performance that allows easy comparison between different
models is desirable. The Diagnostic Odds Ratio (DOR) makes use of the concept of odds ratio applied
to diagnostic scenario [38]. It is defined by the odds-ratio of a test being positive in the diseased
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population relative to the odds of its being positive in the non-diseased, i.e., healthy population.
It is defined by Equation 2.8 or alternatively using sensitivity and specificity Equation 2.8, being
independent of disease prevalence. The value for DOR ranges from 0 to infinity (the higher the
better). Because of its definition, it must noted that DOR may rise steeply as sensitivity or specificity
approaches 100%. A test with specificity of 99% and sensitivity > 90% has a DOR of more than
500 [39].

DOR =
TP
FN

/ FP
TN

(2.8)

DOR =
Sensitivity

(1− Sensitivity)

/
1− Speci f icity

Speci f icity
(2.9)

Area Under the Receiver Operating Characteristic Curve. Calculating a model’s sensitivity and
specificity requires defining a threshold. If the predicted probability is higher than a given threshold,
the test will consider the patient disease and non-diseased otherwise. Since threshold-setting directly
affects the counts of TP, FP, etc. a way of visualizing these key metrics for different thresholds is
required. This can be achieved by means of a Receiver Operating Characteristic (ROC) Curve. It plots
the percentage of false negatives or False Positive Rate (FPR) against the percentage of true positives or
TPR for the whole range of cut-off thresholds, thus making it easy to compare models across different
cut-offs. In probabilistic terms, it defines the likelihood that a patient who is diseased (a positive) will
rank higher than one who is not diseased (a negative).

Furthermore, if one calculates the area below the curve, it offers a summary global metric of the
model’s discriminative capabilities, the so-called AUROC. As such, the higher the AUROC, the better
the model. A perfect model would have a 1.0 AUROC while a model that has no predictive skill
would score 0.5 (perfect diagonal).

Positive and Negative Predictive Value. Positive Predictive Value (PPV), precision, depends on
prevalence and seeks to answer the question: what is the chance that a patient who tested positive
in fact has the disease? Thus, it can be understood as a measure of the quality or exactness of
the model [40]. It depends on disease prevalence, meaning, if prevalence increases, precision also
increases [41].

2.4.2. Calibration

Calibration metrics help practitioners to assess the extent to which model risk predictions agree or
disagree with observed – or real – risk rates in the real cohort. A widespread approach for visualizing
calibration is by plotting predicted probabilities against observed outcome incidence or graphical
method or calibration curve. Another approach to obtain a quantitative rather than qualitative
assessment is by means of calculating alpha and beta calibration via curve fitting. Finally, calibration
can be improved with techniques such as Platt’s scaling or sigmoid calibration.

Calibration Curve. Since real risk rates are not known in advance, i.e., one tries to learn them
from the data, practitioners proceed as follows. First, outcome incidence is calculated across cohort
deciles, or actual outcome probability. Second, for each of those deciles, the predicted probability,
i.e., the model’s output is computed. By plotting actual probabilities against the mean of predicted
probabilities within deciles, one can construct a so-called calibration curve, which makes it possible to
visualize if the model is well-calibrated [42].

Alpha and Beta Calibration. Besides this graphical representation, by fitting a line to the thus
obtained calibration curve, this line’s intercept and slope offer a quantified measure of the model’s
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Figure 2.2.: Classification example showing different classifiers along with fitted calibration line. Note that after
applying Platt’s scaling, the Random Forest classifier achieves a lower Brier score.

calibration, also known as alpha and beta calibration, respectively. Alpha calibration or calibration-in-
the-large reflects the extent to which predictions are systematically too or too high. Beta calibration
helps to measure the spread between predicted and actual outcome probabilities across the different
risk deciles. A beta coefficient lower than 1 suggests a classifier that labels low risk patients too low
and high risk patients too high [36]. Accordingly, a perfectly calibrated classifier would always be
consistent with the observed outcome across all risk deciles, that is, alpha=0 and beta=1. Another
approach to quantify calibration is to use the Brier score, or the mean squared error of the model’s
prediction [43].

Platt’s Scaling. Furthermore, if the model is not well-calibrated, i.e., over or under-predicting risk,
it is possible to calibrate it by adjusting the predicted probabilities. One widely spread approach to
achieve this is Platt’s scaling, particularly useful when the distortion of predicted probabilities are
sigmoid-shaped [44]. Essentially, this method relies on fitting a logistic regression on the predicted
probabilities, i.e., outputs of the classifier. As such, it makes strong assumptions on the distribution
of predicted probabilities (parametric). Another non-parametric option is isotonic regression, which
however requires a large number of samples to avoid overfitting (> 1000). When fewer samples are
available, Platt’s method is often preferred. Noteworthy is that the calibration procedure will not lead
to changes in summary metrics of performance, such as AUROC, but may well affect others, such as
Brier score and log loss [36].

Figure 2.2 adapted from the documentation of scikit-learn [45] illustrates the concepts above with
a RF classifier trained on an example classification task. Note that applying Platt’s scalling helps to
improve calibration, leading to a lower Brier score. Nevertheless, calibration slope is smaller than one,
revealing that the classifier tends to predicts too low for lower risk deciles and conversely for higher
ones, possibly implying model overfit.
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2.4.3. Clinical Usefulness

While it can be argued that good discrimination and calibration metrics lead to better models, in
practice they offer little guidance as to whether the models are actually useful to clinical decision
making itself, when benefits must be assessed against risks, i.e., when consequences matter [46].
To illustrate, comparing two models with the same AUROC, the one with higher sensitivity might
be preferred if the clinical harm caused by missing out on a positive case is higher than that of
misdiagnosing a healthy case. Therefore, a method of weighting out the possible harms of false
positives or false negatives against the benefit of having more true positives and true negatives – or
net benefit – is desirable.

Net Benefit. Consider the concrete example of risk of AKI after a surgical procedure such as
heart surgery. A recommended strategy to prevent AKI in these settings is the optimization of blood
pressure, using fluid management and vasopressor agents [47]. However, such patients’ circulatory
system is already in a compromised condition and administering more vasopressors could potentially
an increased mortality risk. Therefore, if the probability of AKI for the patient is very low, e.g., 5% the
treating physician could refrain from blood pressure optimization to prevent AKI. On the other hand,
if AKI probability is higher, the physician might decide in favor of this course of treatment in spite of
risk associated with treatment.

The different probabilities provided by a model yield different counts of TP and FP depending
on the chosen cut-off point. The threshold probability from which treatment would be considered,
denoted by pt, varies depending on the clinical use and depending on the treating physician and
patient preferences. A measure of Net Benefit (NB) has been introduced by Vickers et al. on the basis
of the theoretical relationship between the threshold probability of outcome and the relative value of
false negatives and false positives [48]. NB can thus be calculated as follows:

NB =
TP
n
− FP

n

(
pt

1− pt

)
(2.10)

Decision Curve. NB can be calculated for any given threshold pt. Plotting NB across different
threshold probabilities gives rise to an instrument called decision curve. It makes it possible for
practitioners to readily visualize the range of thresholds for which there is a net benefit in acting upon
the model’s recommendation. Still, the model should be compared to either competing models or
alternative courses of action. As such, for the decision curve, one should also consider the case when
no patients are treated (no patients will develop AKI, treat none) and the case when treatment is
always dispensed (all patients will develop AKI, treat all) [46]. Decision curve analysis helps to assess
these trade-offs graphically using the relative weight of harms vs. benefits to define the threshold in
different courses of action [48]. Conveniently, a summary measure of net benefit – Area under the Net
Benefit Curve (ANBC) – can be calculated via trapezoidal rule [49].

2.5. Interpretability Methods

The enhanced performance with ML algorithms is often achieved at the expense of model inter-
pretability. The ability to explain and interpret decision is a key requirement in medical applications.
For ML applications, Lipton places particular focus on identifying decision boundaries and ascer-
taining the influence of specific feature for improved interpretability [50]. Approaches have been
developed to achieve interpretability of black-box models, such as the classification vectors approach
by Baehrens et al. and the Locally-Interpretable Model-agnostic Explanations (LIME) by Ribeiro, Singh,
and Guestrin [51, 52]. In particular, Katuwal and Chen applied the LIME technique for achieving
interpretability of random forests for predicting ICU mortality, with accuracy of 80 % [53]. Still in the
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medical domain, Hayn et al. quantified the influence of individual features on particular decisions
made by a random forest in clinical modeling applications [54].

2.5.1. Defining Interpretability

With respect to ML models and results, Doshi-Velez defines interpretability as “the ability to explain
or to present in understandable terms to a human” [55]. In contrast, Lipton sees interpretability as
a “non-monolithic concept" which encompasses a host of “distinct ideas" [50]. Expanding on these
ideas, a fledging community of researchers, deemed Fairness, Accountability, Transparency (FAT)
academics, emphasizes, amongst others, explainability as one of the core principles for accountable
algorithms [56]. This principle establishes that algorithmic decisions should be intelligible to end-users
in “non-technical terms". For the purposes of this thesis, we define interpretability as a property of
machine learning algorithms and their outputs which allows scrutiny by medical experts. Under scrutiny, we
mean the ability of doctors to 1) easily ascertain the ‘reasoning’ behind an algorithm’s decision, 2)
identify the most relevant features for the model’s output and 3) illuminate possible biases within the
model.

For the purposes of this thesis, we define interpretability methods as “tools which quantify or
visualize feature effects or feature importance", describing how features contribute to the predictions
of the model globally or locally [57]. This task is typically achieved by means of surrogate models or
method-based approaches.

2.5.2. Global Surrogate

Global surrogates seek to distill the knowledge captured by a black-box ML model into a more
interpretable model. In this method, also termed mimic learning, a simple, more interpretable or
student model relies on the predicted probabilities of the original or teacher model. As such, instead of
having the actual outputs as training target, the student model is trained on the predicted probabilities
of the teacher model while retaining the same original input features [58]. Formally, given a prediction
model defined by f (x, y) = y′, where x is the model input and y′ its output for a true label y, we train
a mimic model g(x, y′) = y′∗ where g ∈ G, i.e., a class of interpretable models. As such, the mimic
model is obtained by minimizing ∑N

i=1 ||y′i − y′i∗||2 for N training samples. It is worth noting that the
student model is only as accurate as its teacher.

Training the student model on the predicted probabilities makes it possible to derive a more under-
standable, but comparatively well-performinig prediction model. In fact, under certain circumstances,
the student model could generalize better than the more complex, teacher model [58]. Arguably, the
interpretable model attenuates training data irregularities, which could have a detrimental effect on
the teacher model’s generalizability. The logic implemented for the mimic learning approach is shown
in pseudo-code in Algorithm 2 [58].

Algorithm 2: Mimic Learning with Surrogate Model [58]
Input: ML Model, Training Dataset and Test Dataset
Result: Sorted mimic regression coefficients
Obtain Predicted Probabilities of ML Model on Training dataset;
Train Mimic Model on Predicted Probabilities and Training dataset;
Apply trained Mimic model on Test dataset;
Obtain Mimic Model regression coefficients on Test dataset;
Sort Regression Coefficients;
Return Regression Coefficients;
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2.5.3. Local Surrogate

This approach differs from global surrogate to the extent that the focus of explanation is one single
prediction instance, therefore operating locally as opposed to globally. The LIME method makes use
of a more interpretable model, e.g., linear regression, to explain the behavior of a black-box algorithm
when applied to a given sample, i.e., a specific patient instance [52]. Intuitively, LIME seeks to explain
how the model’s prediction changes when the input changes. Given an instance x, in our case a
surgical patient, LIME generates a number of ‘perturbed’ samples weighted by their distance to x and
fits an interpretable model to these new samples.

As per Equation 2.11 the explanations are given by minimizing a loss function L that measures how
well the local surrogate g belonging to a class of interpretable models G approximates our model f in
the vicinity of the instance of interest defined by πx. The loss function is further penalized by model
complexity Ω(g). As such, the explanations are given by the regression coefficients of the surrogate
model, which are deemed to be locally but not globally faithful. To obtain a global understanding
of the model’s behavior, this method provides the so-called submodular pick, in which explanations
are chosen that have the highest explanation coverage, thereby offering some insight into the model’s
global behavior. The method parameterizes how many explanations should be considered. We chose
to generate explanations for 25% of the data used for training. We then computed the mean absolute
value of each feature’s contribution across all explanations. Given that LIME is prone to unstable
explanations because of the randomness of the perturbed samples, we excluded features that appeared
in less than 10% of the explanations.

ξ(x) = argming∈GL( f , g, πx) + Ω(g) (2.11)

2.5.4. Method-based Feature Importance

Many algorithms, such as logistic regression and similar linear models, provide a straight-forward
way to obtain feature importances, e.g., via the calculated feature weights. For tree-based methods, the
algorithm seeks to find features that split the data as homogeneously as possible based on a measure
of impurity, such as Gini impurity or information gain. A feature can be therefore considered more
relevant if it decreases impurity for a given split. As such, to estimate the relative importance of a
feature, one can add up impurity decreases over all nodes that include that feature weighted by the
proportion of samples which are split at the given node. Accordingly, nodes closer to the top of the
tree will be considered more important.

For ensemble methods, decreases in impurity are averaged over all constituent trees, i.e., mean
decrease in impurity [59]. In the case of random forests, one can calculate the importance of a variable
Xm over all NT trees as defined in Equation 2.12, where p(t)∆i(st, t) is the weighted decrease in
impurity over all nodes t which include Xm. In Equation 2.12, v(st) is the variable used in split st
and p(t) = Nt/N, i.e., the proportion of samples reaching t. A disadvantage of the mean decrease in
impurity method is that is algorithm-dependent, i.e., can only be used with tree-based approaches.

Imp(Xm) =
1

NT
∑
T

∑
t∈T:v(st)=Xm

p(t)∆i(st, t) (2.12)

2.5.5. Shapley Values

This method utilizes insights from game theory to obtain feature contributions. In this context, the
“players” can be construed as the different model features, while the model’s prediction represents
the “reward” desired [60]. Intuitively, one can build coalitions of players (features), which, jointly,
contribute towards obtaining the reward (prediction). For any given coalition of features, there will
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be a difference between the actual prediction for a given instance and the average prediction for all
instances. As such, the Shapley value of the j-th feature φj is the average marginal contribution of
a feature value considering all possible feature coalitions when that feature value is added to the
coalition. As the number of features values increases, obtaining the exact contribution might become
computationally costly, given the multitude of possible coalitions. To circumvent this limitation,
Štrumbelj et al. developed a method to obtain an approximation φ̂j with Monte-Carlo sampling [61]
using M total samples.

φ̂j =
1
M

M

∑
m=1

(
f̂ (xm

+j)− f̂ (xm
−j)
)

(2.13)

In Equation 2.13, f̂ (xm
+j) is the prediction for an instance x in which a random number of features

have been replaced by values of a random data point z, while retaining the value of feature j, i.e.,
xm

j . In a similar fashion, f̂ (xm
−j) represents the case in which xm

j is also obtained from the random
data point z. Specifically, in this work, we utilized SHapley Additive exPlanations (SHAP), an even
more computationally efficient alternative to estimating Shapley values, particularly in the case of
tree-based methods [62].
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3. So�ware Platform for Clinical Predictive
Modeling

"Manuscripts don’t burn."

—Mikhail Bulgakov, The Master and Margarita (1967).

To what extent can a complex process be standardized? Is it any useful to attempt to
standardize it? In this chapter, I outline the challenges inherent to the clinical modeling domain

and present a platform for rapid prototyping tailored to the specific needs of clinical modeling –
Modeling of Outcome and Risk Prediction for Health Research (MORPHER). I argue that a move
towards hybrid solutions, i.e., a mix of cloud and on-premise infrastructure, constitutes a viable way to
reduce the time needed to develop, validate, and interpret clinical predictive models in a standardized,
reproducible fashion.

3.1. Introduction

As we have seen in Chapter 2, the clinical predictive modeling process is substantially complex, re-
quiring a number of iterative steps involving collaboration between different actors. In the following,
I provide an overview of the the challenges faced by practitioners in these three areas, i.e., develop-
ment, validation and interpretation and investigate to what extent adequate software support can be
beneficial.

3.1.1. Motivation

Machine learning is rapidly becoming a mainstay in research and industry. Particularly for clinical
predictive modeling, these approaches are being increasingly applied, as evidenced by the growth in
the number of related publications. While different computer tools exist that support rapid prototyp-
ing, I posit that current approaches are lacking in the extent to which the needs of research clinicians
are addressed. This leads to an increase in the time needed for development and validation of such
models. Indeed, the clinical modeling process is riddled with challenges that ultimately affect the
models’ clinical credibility and therefore the extent to which predictive models are used in practice [5].
These challenges are related to flaws and pitfalls in model development as well as validation and
the lack of impact studies [9]. Since the assessment of model impact usually requires setting up a
prospective study, including a RCT, MORPHER is concerned primarily with the challenges pertaining
to model development, validation and interpretation.

3.1.2. Challenges to Development

With respect to model development, three main challenges can be ascertained. They are concerned
with tool support, development standardization and consistency in reporting. These challenges will
be addressed in detail in the following sections.
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Lack of Tailored Clinical Modeling Tools. Medical researchers who develop CPM models are often
burdened by clinical responsibilities and cannot afford to spend valuable patient time coding data
extraction and model training routines. Furthermore, since most clinicians are not trained statisticians
or machine learning scientists, important methodological aspects are often overlooked. To circumvent
these issue, professional statisticians or ML experts are often engaged in the modeling process, but
lacking the medical background, repeated interactions are necessary until satisfactory results can be
achieved. Current tools supporting clinical modeling mitigate those issues to a certain extent, e.g., by
providing visual environments, but are found lacking in central aspects.

Lack of Standardization in Development. Model development is an inherently iterative process.
Therefore, different combinations and tests of a multitude of adjustable parameters are necessary to
achieve satisfactory model performance. Examples are algorithms and their hyperparameters, data
configurations, validation strategies (e.g. split validation vs. bootstrapping), data imputation strategies,
normalization, among others. As such, the search space and possible combinations can grow widely.
This fact calls for a standardized approach in order to make it possible to precisely ascertain what
steps have been followed when modeling. Standardizing the individual steps also make it possible to
keep track of different experiments across iterations.

Lack of Consistency in Reporting. The number of CPMs published has been growing steadily.
However, key details on how these models have been developed, what methods have been applied and
how are often lacking. This is a particularly acute issue concerning performance reporting, meaning
a model’s statistical power. A large number of publications rely on discrimination as the sole metric
of evaluation, which might convey a biased assessment of a model’s capabilities. Other metrics
exist, such as calibration and clinical usefulness, that contribute towards a more complete evaluation.
In this context, guidelines such as Transparent Reporting of a Multivariable Prediction Model for
Individual Prognosis or Diagnosis (TRIPOD) provide guidance on what to report in a predictive model
publication [7].

3.1.3. Challenges to Model Validation

While a significant number of new predictive models are continuously being published, specially
since the advent of ML approaches, only a handful of them are validated externally. The reasons
for this phenomenon are manifold, partially stemming from a systematic novelty bias in academic
publishing. For the purposes of this thesis, the challenges are mostly concerned with barriers to data
access, reproducibility and iterative experiments.

Barriers to Data Access. For privacy protection reasons, data for validation in hospitals often
lies beyond the reach of external researchers aiming to validate their models. In order to allow
collaboration across institutional borders, apart from legally challenging and time-consuming efforts
to allow data access to third parties, one can pursue a strategy of ‘bringing algorithms’ to data instead.

Barriers to Reproducibility. No standard for development exists which establishes a common,
reproducible standard for clinical predictive modeling, thereby posing a hindrance for reproducibility
of experiments. Next to a lack of a standard on a description level, a consistent environment for
execution is also required, e.g., concerning libraries and software versions. A related issue is concerned
with data standards: they should either have been used at derivation, so that validation is seamless,
or a detailed specification of predictors must be available.

Barriers to Model Iteration. The iterative nature of model development also extends to validation.
This process might require updates and changes on both ends, i.e., derivation and validation model,
each giving rise to a new iteration. Given that models need to be adjusted to fit a given population
over different experiments – or iterations – relying on having to manually running model updates
every time might prove unfeasible.
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3.1.4. Challenges to Model Interpretation

The gains in performance provided by ML models often come at the cost of interpretability. As
a result, the adoption of ML-based models in the clinical setting has been met with skepticism in
the medical community. To a significant extent, the reason for this skepticism can be traced back
to the lack of transparency in the predictions generated by these complex algorithms. Therefore, it
remains important to guarantee access to intelligible explanations, which allow model predictions to
be scrutinized by medical experts.

Access to Intelligible Explanations. Explanations for complex machine learning models can be
broken down into two perspectives. First, a practitioner might be interested to obtain a global
understanding of a model’s inner workings, e.g., in terms of what features most contribute towards
its predictions. Second, a local perspective, i.e., scrutinizing predictions at the sample, patient-level
is also desirable, since a model’s averaged behavior might not be representative of how individual
patients are handled by it.

Access to Explanation Comparisons. Multiple methods for deriving explanations exist. Given that
different methods place focus on a particular aspect of how models work, their explanations might
differ. Therefore, it becomes necessary not only to have access to different such methods, but also to
obtain a comparison across different methods. This enables a more balanced view of what features
are important, e.g., because multiple methods indicate them as relevant.

Access to Evaluating Explanations. While explanations provide an insight into model behavior, the
possibility to act upon the insights, meaning the ability to change the original model in response to
a medical expert’s feedback remain not addressed. This usually entails adjusting the original scripts
and submitting the explanations again for evaluation. Adequate support can speed up this process.

The remainder of this chapter proceeds as follows. First, in Section 3.2, I outline related work in
this field, with an overview of software support for clinical predictive modeling. Then, in Section 3.3,
details on the requirements engineering approach, and technologies utilized for the development are
provided. Section 3.4 outlines functional and non-functional requirements derived from interviews
with experts in the field. In the same section, I present the architecture and implementation of tool
MORPHER which aims to address these requirements. Finally, in order to evaluate how MORPHER
contributes to the existing body of knowledge, in Section 3.5 I present the results of a functional
comparison between this work and other related approaches, assessment of expert interviews and
performance in a simulated clinical modeling task for Chronic Kidney Disease (CKD).

3.2. Related Work

As the basis for related work comparison from a functional perspective, I conducted literature research
on tools that can be used to support clinical predictive modeling. I used different permutations of
the following search terms: ‘machine learning’, ‘prediction model’, ‘predictive model’, ‘predictive
modeling’, ‘predictive modelling’ (British spelling), ‘data mining’ and ‘prediction’ in combination
with the terms ‘tool’, ‘toolkit’, ‘software’, ‘framework’, ‘workbench’ and ‘platform’, e.g., all articles
containing the full phrase (all of the words) ‘predictive modeling platform’, ‘data mining framework’
or ‘prediction framework’.

In the assessment carried out, software tools were included which can be used to allow a clinical
researcher to develop machine-learning based predictive models. Tools were excluded which might
be used in the ML industry but are not yet part of peer-reviewed publications. Furthermore, tools
targeted at natural language processing, text mining, bioinformatics, patents, as well tools focused on
other domains, such as chemistry or articles in languages other than English were excluded.
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The literature research carried out revealed a wide array of IT tools that are currently employed
to support the clinical modeling process. They range from statistical packages to visual modeling
environments, either for general purposes or with a biomedical focus. I assessed them with respect to
their degree of compliance with the requirements gathered as laid out in Table 3.1. These tools can be
broken down into the following categories:

• Statistical Packages. While extensively utilized in practice, statistical packages usually run on
the developer’s own machine, i.e, are not targeted at the specific needs of clinicians and are
ill-suited to handle large amounts of data. Examples are SAS [63], SPSS [64], Stata [65] or others.

• Mathematical Software. Software such as Matlab [66] and Octave [67] provide statistical routines
that could be used to develop prediction models. However, similarly to ML toolkits these
solutions can only be utilized by expert users and reproducibility is not necessarily guaranteed.

• ML Software Toolkits. ML toolkits, though powerful, require expert knowledge for handling.
Furthermore, the freedom developers have makes it harder to establish standards for sharing
models. Toolkits such as scikit-learn [45], h2o [68], Keras [69], Pytorch [70], along with the
myriad of ML R packages [71] fall under this category.

• Visual Modeling Suites. Visual ML suites like Weka [72], Orange [73] and RapidMiner [74],
make model development and sharing substantially easier, but data integration remains an
issue, performance reporting is not standardized, and medical knowledge is not integrated in a
structured fashion. In addition, a combination of Jupyter Notebooks and a ML toolkit has been
increasing applied in research [75].

• Biomedical Software. Biomedical software usually runs on a central local server and as such are
detached from the outside world if sensitive data is being handled. Even though they automate
model development to a considerable extent, sharing results across institutional borders remains
cumbersome. Examples of this category are tools such as tranSMART [76], ATLAS [77] in combi-
nation with the PatientLevelPrediction (PLP) R package [78], MLBCD [79], and ExplICU [80].

Even though currently different tools exist which enable rapid prototyping of ML models, they
address the challenges laid-out only to a limited extent. For example, current tools offer no readily-
available support in the methodological aspects pertaining to modeling, for example in the form of a
standard set of performance metrics and help in handling predictors. Besides, visual modeling tools
make it possible to a certain extent to ascertain what steps have been followed in modeling. However,
these tools are general-purpose and do not cater to the specific needs of clinical modelers, e.g., clinical
usefulness metrics are not provided. Furthermore, extant IT-tool support provides no easy way to
seamless share models across institutions, i.e., the possibility to take algorithms to researchers, not
data. Likewise, only a subset of these tools support medical standards that could facilitate model
validation.

3.3. Methods

In the following, I provide details on the approach pursued for requirements engineering. I also
outline the technologies used in this work along with a typical user scenario. Finally, I present how
the tool assessment was carried out.

3.3.1. Requirements Engineering

I utilized elements of the design thinking methodology to carry out a workshop with subject-matter
experts for clinical predictive modeling and machine learning [81]. This expert panel was made up of
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Figure 3.1.: Brainstorming session with workshop participants. They were divided in mixed groups, i.e., both
with technical and clinical focus, and tasked with specific design challenges.

researchers linked to the BigMedilytics Horizon2020 project1 and invited practitioners. In total, the
panel included three medical doctors (general medicine, nephrology and cardiology) and six machine
learning professionals, all of which routinely conduct predictive modeling research. The experts were
divided in two multidisciplinary groups. The first group was tasked with answering the following
question: “What should a computer tool provide to make clinical predictive modeling easier and help
avoid common mistakes?”. The second group addressed the question “How can a computer tool
help make validation of clinical predictive models more feasible?”. Each group then brainstormed in
separate group session.

In a subsequent step, the results achieved in each group were jointly discussed and summarized.
Then, I distilled the workshop results into personas and user stories. Personas are representative of
categories of users of a given solution and stories synthesize user aims which can be translated into
software requirements. This generated a catalog of user stories, which established the foundation for
functional and non-functional requirements in accordance with ISO/IEC/IEEE 24765:2017 [82]. The
requirements thus identified are listed in Table 3.1.

3.3.2. Personas

Two main stakeholders can be ascertained who are actively involved in the clinical modeling process,
the research clinician and clinical modeler. The former usually participates actively in the early and
late phases of the process, providing guidance on the research questions and cohort selection, as well
as validating and interpreting results from a clinical standpoint. A high degree of clinical knowledge
is required in this role, since it impacts data collection, defining predictors, and establishing key
clinical requirements. The latter is more concerned with the analytical aspects of the process, being
responsible for the statistical modeling itself. While deeper understanding of mathematical modeling
is expected, some degree of clinical exposure helps to ensure seamless communication between the
stakeholders.

3.3.3. User Story Mapping

In order to guide the implementation of the first MORPHER prototype, I utilized the User Story
Mapping (USM) methodology [83]. Building upon the insights gathered during the expert workshop
referred to in Section 3.3 above, I outlined important steps in the user’s journey in the tool. Figure 3.3
displays the result of user story mapping for each aspect, modeling, validation and interpretation.

1https://www.bigmedilytics.eu/
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Figure 3.2.: Identified predictive modeling process personas. Research clinicians (medical specialists focused on
research) and clinical modelers (data scientists specialized on health) collaborate to develop prediction models.

In summary, Researcher A selects a cohort and train models, upon which she evaluates the model’s
performance. A second actor, Researcher B, can then select that particular model and apply it to a new
cohort, while visualizing the pertinent metrics (discrimination, calibration, clinical usefulness). Both
researchers also have the possibility to inspect the generated model to interpret it.

Notably, the story mapping conducted has evolved over time, so Figure 3.3 represents a comprehen-
sive yet not exhaustive subset of the users’ journey in the tool. Also, not every single item of the story
mapping could be successfully implemented. In particular, the items displayed under ‘backlog’ will
be included in future iterations of the tool.

3.3.4. Technologies Utilized

The platform developed relies on substantial existing work. Though the technologies have been
already elucidated throughout Section 3.4.2, I provide here a brief overview.

Web Applications. In the development of both MORPHER Cloud and Local, I applied the Model-
View-Controller (MVC) design pattern, used to bring together the user interface with the underlying
data models via so-called controllers [84]. Here I made use of Python web technologies, such as Flask,
to develop the web applications, along side Javascript frameworks JQuery and Vue. For the local
instances, I additionally used Docker containers for to make deployment easier.

Database Backend). MORPHER Cloud relies on Postgres as a database relational backend. Specif-
ically, I made use of the document-based extensions of this database to allow extensibility of the
different data resources. The execution environment makes use of an In-Memory database and keeps
manages the task execution in a separate database.

User Authentication. In order to enable users to switch seamlessly between the local and cloud
applications, I adopted the Single Sign On (SSO) approach, building upon existing work (HPI Identity
Provider2). The user authentication flow follows the Security Assertion Markup Language (SAML)
standard [85].

Execution Environment. I utilized the existing Analyze Genomes Worker Framework as the basis
for the execution environment, where model training, validation and interpretation takes place [86].
Originally developed for genome analysis, I created MORPHER jobs which are fully pluggable within
this framework, thereby making it compatible with the existing infrastructure. I utilized the existing

2https://accounts.analyzegenomes.com/idp/
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Viable Product.
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Figure 3.4.: Exemplary depiction of MORPHER train pipeline implemented via the Analyze Genomes Worker
Framework [86]. Model developers can define pipelines graphically using Business Processing Modeling
Notation 2.0 (A). Each step of the pipeline is an executable Python script that can be parameterized in a later
step (B).

Worker Framework for definition and execution of specific ML tasks on a scalable distributed comput-
ing infrastructure. The Worker Framework automates scheduling and parallel asynchronous execution
of such jobs on distributed computing nodes. All data pertaining to task scheduling and execution
is stored in a persistent database, so that the statuses of long-running tasks, such as hyperparameter
optimization, can be tracked and performance statistics retrieved.

Machine Learning. For the ML pipelines, I employed existing ML libraries, such as Pandas [87] for
data manipulation, scikit-learn [45] for ML models, fancyimpute [88] for imputation. Additionally, I
included specialized ML algorithms, such as XGBoost [89] and LightGBM [90].

3.4. Results

3.4.1. So�ware Requirements

The software requirements are intrinsically linked to the clinical modeling process itself and the
identified challenges. Therefore, these requirements are the direct result of literature research carried
out and the insights obtained from the expert workshop. In the following, I cover both functional and
non-functional requirements.

The functional requirements were mapped to the steps for clinical predictive modeling and are
laid out in detail in Table 3.1. The practitioners interviewed also pointed out a number of non-
functional requirements. For one, they stressed the need for research clinicians and model developers
to collaborate more closely in order to reduce the time needed for model evaluation. As such, tools
would to need to be friendly to non-ML, i.e., clinical experts. That entails the necessity for visual
model development, meaning without to the need to write code, install packages, etc., for example by
means of a drag and drop interface. In addition, given that ML predictive modeling usually includes
computationally intensive operations, such as hyperparameter optimization, the software employed
should take advantage of the parallelization capabilities of the underlying hardware, be it cloud-based
or on-premise.
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Table 3.1.: Functional and non-functional requirements for development and validation of Clinical Prediction
Models. Abbreviations: F=Functional Requirements; NF=Non-Functional Requirements.

User Stories or Requirements Personas or Stakeholders

Item Step Description
Research
Clinician

Model
Developer

F1

Preparation

Candidate Predictors: Provide a pre-defined list of candidate
predictors derived from expert knowledge of the specific domain,
e.g., in the form of predictors used in similar studies.

F2 Medical Knowledge Graphs: Utilize medical knowledge graphs
to guide model development, which can inform how to transform
predictors or assess clinical meaningfulness of results.

F3 Use of Best Practices: Provide assistance in adopting best prac-
tices while developing the models, such as how to choose a
significant cohort, perform data transformation, and interpret
results.

F4

Dataset
Selection

Cohort Exploration: Enable interactive exploration of a given co-
hort, including descriptive statistics, such as standard deviation,
min-max values, without coding necessary.

F5 Common Data Formats: Enable the use of harmonized or stan-
dard data formats for model development based on an existing
initiatives, such as OMOP or FHIR.

F6 Common Data Semantics: Provide harmonized semantics for
model variables, e.g., how to define a given outcome or pheno-
type, consistency in extracting variables, agreed upon units of
measurement, etc.

F7

Predictor
Handling

Support in Coding of Predictors: Provide different ways on
how to code categorical and continuous predictors, using label
binarization, one-hot encoding, threshold setting and the like,
since this directly affects model performance.

F8 Data Transformation and Pre-processing: Provide data transfor-
mation tools to ensure common formats and semantics and data
pre-processing techniques, e.g., normalization/scaling, as well
as single (mean) and multiple imputation with k-NN or other
methods.

F9 Feature Selection: Utilize and compare different feature selec-
tion approaches, such as stepwise selection, t-tests and mutual
information.

F10

Model
Generation

Model Comparison: Enable comparison of multiple candidate
models side-by-side, i.e., provide different modeling algorithms
out-of-the-box.

F11 Version Control: Allow versioning to track data and model
changes so as to enable comparisons across different versions,
in order to ascertain the impact of changes to data, hyperparam-
eters or algorithms.

F12 Formal Characterization: Enable machine-readable description
of models to ensure reproducibility and trackability, e.g., via
Business Process Modeling Notation.

F13

Model
Evaluation and
Validation

Internal Validation: Provide cross-validation and/or train-test
split validation methods that enable a first assessment of a
model’s performance.

F14 External Validation: Provide the possibility of running a given
model upon new data with minor modifications if underlying
data consistency is ensured, i.e, sharing of models across institu-
tions seamlessly.
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User Stories or Requirements Personas or Stakeholders

Item Step Description
Research
Clinician

Model
Developer

F15 Standard Metrics: Provide an extensible set of standardized met-
rics for discrimination such as c-statistic, ROC curve, precision,
recall, etc., calibration and clinical usefulness.

F16

Model
Interpretation

Intelligible Explanations: Provide explanations for blackbox
models that are easily understandable by non-ML experts both
at the global (model) and local (prediction) level.

F17 Feature-based Importances: Provide a quantification of feature
importances for each model predictor to ascertain its role in the
prediction.

F18 Comparison of Interpretability Methods: Provide unified view
of different interpretability methods.

F19

Model
Presentation

User-friendly Scores: Provide scores that make the application
of the model easier, e.g., using paper calculations or nomograms.

F20 Computer-based Frontend: Provide developed scores by means
of a web browser or smartphone app.

F21 Integration into Clinical Software: Enable seamless integration
of the model into care workflows by means of contextual integra-
tion into existing clinical software.

NF1

Non-Functional

Non-Expert User Friendliness: Enable also non-expert level
users to develop and validate models.

NF2 Visual Model Development: Enable visual development of pre-
dictive models, e.g, via drag and drop of pre-existing building
blocks

NF3 Parallelization Capabilities: Enable parallelization of time-
consuming tasks, e.g., hyperparameter optimization.

3.4.2. So�ware System Architecture

The following sections provide detailed information on the architecture of the MORPHER platform,
which makes use of Web and ML technologies to support clinical predictive modeling, comprised of
different layers targeted at application, platform, execution and data concerns. The architecture is
depicted as a Fundamental Modeling Concepts (FMC) block diagram in Figure 3.5. In the following,
after briefly outlining my approach, each architectural component will be described in further detail.

Hybrid Approach (Cloud and On-Premise)

MORPHER enables research clinicians and model developers to create, share and validate CPMs
using a combination of a cloud-based approach with on-premise, i.e., local, MORPHER instances
running on composable docker containers [91]. The MORPHER cloud instance provides the necessary
functionality to design CPMs with a visual interface using BPMN 2.0 notation. Models thus developed
can be shared with other researchers/institutions to either 1) refine the model, 2) re-train it using
existing data or 3) validate it using own local data. Data on model performance is provided in a
standardized and centralized fashion. Given that the execution environment and trained models are
equivalent, the tool enables reproducibility of experiments and validation of CPMs without significant
overhead, as long as that data on both ends follow the same formats, e.g. Observational Medical
Outcomes Partnership (OMOP) [92].
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Figure 3.5.: MORPHER architecture depicted as a Fundamental Modeling Concepts (FMC) block diagram. Differ-
ent institutions can collaborate exchanging models and metrics while keeping local data private.

MORPHER Cloud

This layer is concerned with providing the core application components, which are accessed by users
via the Web interface, namely, both model developers and research clinicians. The Web frontend
relies on HTML5/JQuery [93]. The application server backend is based on Python Flask [94]. Model
developers are responsible for specifying CPMs in terms of loading, preprocessing, train and evaluate
steps. Each of the processing steps can be visually specified by means of pipelines using standard
BPMN 2.0 notation, which can be parameterized and executed. The Model Training and Evaluation
component offers the Representational State Transfer (REST) interfaces that activate the ML function-
alities exposed by the MORPHER Framework to train and evaluate different machine learning models
using a standard set of metrics.

Local Data Stores

Data that is stored locally refers almost exclusively to the cohort data used for model development and
validation. The different cohorts used as the basis for model development and validation are stored
locally to safeguard privacy. Clinical researchers can import data from various sources and apply user-
defined filters and transformations for predictor handling, such as binarization, normalization and
imputation. It must be noted that advanced data preprocessing, such as pivoting, feature extraction
from time-series data and data cleaning are not currently supported. An effort that varies starkly from
case to case, this task does lend itself easily to automation and must be conducted in a previous step.
MORPHER supports data in Comma-Separated Values (CSV) format, direct database connections
with a user-defined database connection and a Structured Query Language (SQL) query.
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Shared Data Store

Data that is stored centrally is concerned with task execution, i.e., model training itself, the thus trained
models and performance metrics. Trained models are stored a structured fashion using jsonpickle [95].
In this way, models can be later retrieved and instantiated in order be applied on a different cohort, for
validation purposes. Not only trained models, but also relevant metadata such as input/output and
the algorithm’s hyperparameters are available. Along with model metadata, data pertaining to true
labels, predicted labels, and predicted probabilities after model applying the model are also stored in
the repository. This enables flexible generation of model metrics, including discrimination, calibration
and clinical usefulness. User data for login and audit purposes are also stored centrally. The database
backend currently relies on Postgres, using a combination of relational and document-based (JSON)
objects.

Analyze Genomes Worker Framework

As the execution environment for model training, evaluation and interpretation, we built upon ex-
isting work carried out by Schapranow et al. [86]. The AnalyzeGenomes.com platform provides a
runtime environment for BPMN-based process models initially designed for genomic data processing
pipelines [86]. It consists of a design environment supporting graphical modeling and an execution
environment, which can run arbitrary program code. Each step of the modeled process pipeline is
defined in corresponding Python script implemented with the MORPHER Toolkit. Amongst others, it
supports common tasks involved in data loading, preprocessing, training and evaluation of multiple
ML algorithms.

MORPHER Toolkit

The tasks to be executed are defined via this component. It is a Python package that handles the most
common tasks involved in data loading, preprocessing, model training and evaluation of multiple ML
algorithms. For data handling, such as label binarization or one-hot encoding, the package utilizes
the library Pandas [87]. Since medical data is often very sparse, this package encapsulates routines
for single and multiple imputation, e.g., k-NN, using the library fancyimpute [88]. Model training is
provided by the ML library scikit-learn [45]. Currently, the framework supports the algorithms decision
tree, random forests, gradient-boosting decision tree, logistic regression and multilayer perceptron,
among others. More algorithms can be added with ease following the defined software interfaces.
Furthermore, the software interface is designed to support multiple ML backends, i.e., though I use
scikit-learn at this point, the Toolkit are not dependent on it.

In model training, another important aspect is hyperparameter optimization. The Toolkit provides
it by performing grid search across a range of different parameters, optimizing via cross-validation of
AUROC. Consequently, by providing a simplified for a number of routine tasks involved in modeling
based on existing utilities, this component can be easily utilized on its own, for scripting purposes,
or embedded in fully-fledged applications. Table 3.2 provides an overview of the functionalities
implemented and the options to researchers via the MORPHER Toolkit Application Programming
Interface (API).
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3.4.3. System Implementation

In this section, I provide details on system implementation, including database design, class diagrams
and sequence diagrams.

Database Design

The appropriate implementation of the requirements identified required a suitable database design. I
employed a hybrid solution comprising both a relational and an object-based component reliant on
JavaScript Object Notation (JSON) that could support the flexible nature of the platform. In brief, I
outline the main entities that make up the platforms database design, which are the following:

Cohorts. Predictive modeling work relies critically on a given patient cohort. Basic information
such as name and user (owner) are supplemented by dynamic information in JSON format, such as
features, transformations, filters and the like. The cohort data itself is stored in Comma-separated
Values (CSV) format with a link for this entity. Upon cohort upload, summary information on the
cohort is stored in a separate JSON file, removing the need for generating those statistics every time
the user wants to explore the cohort with the package Pandas Profiling [101].

Models. The output of a training a ML-algorithm is a model, which must be stored in the database
for posterior use, e.g., model validation. The trained binary object itself is stored in the database as
JSON, allowing it to be retrieved and re-instantiated at a later stage. Meta-level data such as features
used, model target, and hyperparameters is stored in a JSON field ‘params’.

Experiments. The act by the user of training, validating or interpreting a model is understood at the
database level as an ‘experiment’. Additionally, this entity also keeps track of key model performance
metrics for later retrieval (discrimination, calibration and clinical usefulness). Therefore, it is possible
to retrieve the metrics of training or validating any combination of model and cohort.

Predictions. In order to plot many of the model evaluation diagrams of the platform, such as ROC
and calibration or clinical usefulness curve, it is necessary to record the model predictions (predicted
probabilities and labels) for each cohort sample, i.e., patient, along with the expected label. This makes
it possible to calculate deviations from the expected outcomes, which can then be provided to users
upon model evaluation.

Other Entities. A central aspect of MORPHER is enabling collaboration and sharing. For this
purpose, the platform needs to keep track of users, shared cohorts and shared models, as well as roles.
As such, a user can generate a model that can be shared with a second user to validate it on his own
local cohort.

Figure 3.6 depicts the Entity-Relationship diagram of MORPHER. Note that much of the inherent
complexity is abstracted by means of JSON attributes, such as ‘params’, which make it possible to
extend the data stored as new features are added to the application. For instance, if new metrics for a
given model were to be added to the platform, the database structure would remain the same, only a
new property added to the JSON definition in the ‘params’ attribute of the ‘experiments’ entity.

Class Diagram

The class diagram of MORPHER Cloud closely matches the data model depicted in Figure 3.6,
therefore being reflected via Object-Relational Mapping (ORM) in application classes by means of
SQL Alchemy [96]. As such, for the class diagram, I focus on the MORPHER Toolkit, the component
that automates routine clinical modeling tasks. The Unified Modeling Language (UML) class diagram
depicted in Figure 3.7 illustrates more closely how the Toolkit is embedded into the existing AG
Worker Framework and how it can be easily extended.

The core of the Toolkit is the MorpherJob , containing services shared by all sub-classes, such as
access to the Cloud API. This job is compliant with the class signature of the Worker Framework jobs,
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Figure 3.6.: Entity-Relationship diagram of MORPHER database. Flexible extensions of the data model are
possible via JSON attributes, ensuring continuous platform development with limited impact to the data
model’s structure.
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Listing 3.1: Implementation of LightGBM algorithm in MORPHER Toolkit. kwargs construct provides the means
to pass on keyword arguments to the constructor, e.g., particular hyperparameters.

1 from mopher.algorithms import Base

2 import lightgbm

3 """

4 Base class defines methods such as

5 fit(), predict() and predict_proba()

6 """

7 class LightGBM(Base):

8 def __init__(self, **kwargs):
9 clf = lightgbm.LGBMClassifier(**kwargs)

10

11 ’’’ call Base constructor ’’’

12 super().__init__(clf, **kwargs)

i.e., it inherits from that class. Since the Worker Framework can dynamically load external libraries
compatible with its API, one is able to define an arbitrary number of jobs. This job-based approach
makes it possible to implement at the code-level the steps identified clinical modeling process (cf.
Figure 2.1).

For example, the Job Train makes use of ML models defined in the algorithms module for model
generation. These algorithms inherit from a base class, which offers the functionality for model
fitting and predicting in a centralized fashion. As such, for extending the collections of algorithms, it
suffices to inherit from Base and provide the custom code based on any existing implementation. For
example, the algorithm LightGBM [90] can be included in the Toolkit by using the code in Listing 3.1.

The algorithms thus defined can be instantiated at runtime, according to the parameters passed on
to the method execute . A similar approach is followed by the Impute and Explain jobs, where the
custom classes are defined and can be instantiated according to parameterized method calls.

Example Implementation

The different jobs available in the Toolkit can be used in standalone mode, i.e., without an instance of
the AG Worker Framework. As such, they can be combined at will within a pipeline. Let us assume a
patient cohort is available and we want predict a target outcome using a range of algorithms such as
LR, Decision Tree (DT) and GBDT. Further, we want to conduct split internal validation using a test
size of 20% of the available data. Finally, missing data shall be imputed using k-Nearest Neighbors
(kNN). This task might require several lines of code by for all the intermediate steps. With MORPHER,
it can be substantially simplified by chaining the Toolkit jobs. Listing 3.2 illustrates the approach.

Sequence Diagram

In order to illustrate how the Local and Cloud instances of MORPHER can support the work of
two researchers, I make use of a Unified Modeling Language (UML) sequence diagram, depicted in
Figure 3.8. First, a researcher in Clinic A uploads her cohort locally while making metadata available
to the cloud instance. The Cloud then triggers a request for training for the MORPHER Local instance
in Clinic A. A model is then trained locally and the processing result, i.e., the model binary and model
performance (metadata) is sent back to the Cloud via a REST API and shared to researcher in Clinic
B. In a second step, a researcher in Clinic B proceeds similarly and uploads his cohort metadata to
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Listing 3.2: Demo implementation of a predictive model for diabetes using the MORPHER Toolkit jobs. Note that
the dictionary ‘results’ contain model metrics for the trained algorithms.

1 import morpher

2 from morpher.config import algorithms , imputers

3 from morpher.jobs import *
4 from morpher.metrics import *
5

6 ’’’ define the input file and target variable ’’’

7 filename="cohort.csv"

8 target = "diabetes"

9

10 ’’’ First we load, impute and split the dataset in train and test ’’’

11 data = Load().execute(filename=filename)

12 data = Impute().execute(data, imputation_method=imputers.KNN)

13 train, test = Split().execute(data, test_size=0.2)

14

15 ’’’ Then we train the given algorithms on the training set ’’’

16 models = Train().execute(

17 train,

18 target=target,

19 algorithms=[

20 algorithms.LR,

21 algorithms.DT,

22 algorithms.RF,

23 ]

24 )

25

26 ’’’ and evaluate them on the test set ’’’

27 results = Evaluate().execute(test, target=target, models=models)
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Figure 3.7.: Unified Modeling Language (UML) class diagram of MORPHER Toolkit. MORPHER Jobs inherit
from the base Worker Framework class Job, thereby making it possible for these jobs to be executed in the
existing Worker Framework infrastructure.

the cloud while keeping her physical data locally. Now, instead of training a new model, she simply
retrieves the model trained by researcher A and requests a validation, which also happens in the
local computing infrastructure). Likely, this validation generates metadata (i.e., performance metrics),
including discrimination, calibration and clinical usefulness. Finally, researcher in clinic B can requests
the model developed to be interpreted using local data.

The communication between the Cloud and Local instance takes place via Advanced Message
Queuing Protocol (AMQP) supported by the AG Worker Framework infrastructure. More specially,
the Cloud instance runs a message broker – Redis [102] – which queues processing requests from
registered worker nodes running Celery [103]. Processing nodes can only register within the message
broker by means of a secret key, to prevent attacks. The MORPHER Toolkit jobs can be executed
locally by Celery. The Toolkit, in turn, communicates the result back to the Cloud instance via REST.

Cohort Metadata

The cohort metadata that is sent from local nodes over to the cloud contains only textual, non-
identifying information. The Cloud node exposes API which are accessed by the Local clients. These
local clients are authenticated via JSON Web Token (JWT). The information that is sent over to the
cloud about the local cohort is limited. The variable params contains data such as the local filename,
column names, and any cohort transformations. The server responds with the id of the newly created
cohort.

When a train model command is issued from the cloud to train a model with a local cohort, it is
picked up by the local worker node. The local worker node then starts the local training pipeline for
the specific cohort.
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Clinic A Cloud

Send cohort metadata

Train models

Clinic B

Send model + metadata

Send cohort metadata

Validate models

Send metadata
(performance)

Interpret models

Send metadata

1

2

3

Figure 3.8.: Unified Modeling Language (UML) sequence diagram displaying how MORPHER can support the
workflow of two researchers. The colored bar highlight processing that takes place locally. Cloud and local
instances communicate by means of AMQP.
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User Journey

The user journey in MORPHER follows the clinical modeling steps laid in Section 2.2, i.e., dataset
selection, predictor handling, model generation, validation and interpretation. The user can select
from a list of available cohorts, which have been previously either 1) uploaded or 2) shared with the
respective user. Note that if the cohort is a local cohort, i.e., residing in a remote local, only textual
information about the specific cohort is available. Then, the user can select from a list of available
cohorts, which have been previously either 1) uploaded or 2) shared with the respective user. Note
that if the cohort is a local cohort, i.e., residing in a remote local, only textual information about the
specific cohort is available. After selecting the respective cohort, the user can explore the respective
features, or define feature transformations. This action is then followed by model generation, in which
parameters can be manually specified, such as imputation method, algorithms, etc. Optionally, an
automated mode cycles through all available options. After model generation, the user can inspect
model metrics and verify feature importances with interpretability methods. Figure 3.9 shows the first
three steps in exemplary screenshots.

3.5. Evaluation

In this section, I evaluate the proposed platform from three perspectives. First, I carry out a functional
comparison to existing approaches in clinical predictive modeling taking into account the requirements
laid out. Second, I analyze how the platform performs in comparison to one selected tool from the
list of related work considering different dimensions. Finally, by means of semi-structured interviews
with experts, I seek to assess technology acceptance with regards to the platform. In the following,
each aspect will be described in detail, including study design, study subjects and results. A joint
discussion is then presented in Section 3.6.

3.5.1. Functional Perspective

In the final assessment for the functional perspective, software tools were included which allow a
clinical researcher to develop machine-learning based predictive models without the need to code, i.e.,
enabling visual use, thereby excluding mathematical software, ML software toolkits and biomedical
software that require coding skills, such as the PLP R package. Their degree of compliance with the
requirements gathered was indicated by a solid, half-filled and empty circle as depicted in Table 3.4.
Some of these tools, such as ML suites, make it possible to rapidly prototype models, yet they do not
cater to the specific needs of clinical modelers. In addition, extant IT-tool support provides no easy
way to seamless share models across institutions.
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(a) Cohort selection screen. User sees available cohorts.

 
(b) Cohort exploration screen. Descriptive statistics for selected column.

 
(c) Model generation using fully automated mode or manual configuration. 

Figure 3.9.: Exemplary screenshots from MORPHER displaying the user journey. Note that the respective clinical
predictive modeling steps reflected on the tool itself.
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Table 3.3.: Overview of selected REST APIs from MORPHER Web with the corresponding endpoints, request and
responses. Requests are placed by Local clients via JWT authentication.

Endpoint Request Response

cohorts/create
Creates a new local co-
hort.

{
"name":‘...’,
"description":‘...’,
"parameters": params,
"user_id": current_user.id

}

{
"cohort_id": cohort_id

}

cohorts/user
Get a list of cohorts from
current user.

{
"user_id": user_id

}

[
{

"name":‘...’,
"description":‘...’,
"parameters": params,
"user_id": user_id

}, ...
]

cohorts/[id]
Updates a given cohort,
e.g., share cohort with
other users.

{
"cohort_id": cohort_id,
"params" : params,
"name": name,
"description":description,
"shared_users": [users],

}

{
"OK" or "Not Authorized"

}
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3.5.2. Clinical Modeling Task

To compare my platform to a similar state-of-the-art competitor, I designed a clinical modeling task
to be carried out within a specific time frame. I then extract a number of metrics from the task such
as user activity, as well as task completion and correctness metrics. For the test, I selected the tool
RapidMiner Go (RMG) 3, a recently published automated version of RapidMiner [14].

Study Design. To conduct the assessment, we designed a clinical modeling task to be carried out
within a set time frame of one hour / 60min. The task entailed a given dataset which should be
preprocessed and a number of modeling algorithms to be trained followed by model evaluation and
interpretation. The users where then required to fill out a report which was developed to cover relevant
items suggested by the TRIPOD criteria [7]. To help analyze the results and avoid possible biases, I
additionally required the participants to answer questions regarding their previous knowledge and
experience conducting clinical predictive modeling. Figure 3.10 provides an overview of the proposed
study design. The subjects were thoroughly informed on the research study and consented to have
their answers analyzed for this thesis via an electronic consent form on Google Forms.

Study Subjects. The study participants included a cohort of Digital Health and IT-Systems En-
gineering master program students Hasso Plattner Institute with little to no exposure to clinical
predictive modeling. Also, the study subjects had no previous experience with either tool, nor with
the clinical task itself. A pre-selection identified 91 candidate subjects, who were contacted via e-mail.
The final cohort was composed of 12 subjects (13% response rate), out of which half were assigned to
MORPHER and half to RMG, via stratified randomization using Graphpad [107].

Modeling Task. The clinical modeling task entailed developing a number of CPMs for CKD. The
data utilized the fully anonymized Pima Indians dataset openly available on-line, therefore no data
restrictions apply [108]. The task was divided into sections following the clinical process modeling
steps laid out in Figure 2.1, namely, dataset selection, predictor handling, model generation and
evaluation and model interpretation. The subjects received a document containing a comprehensive
description of the task. They then utilized an on-line questionnaire on Google Forms to provide their
answers to questions posed. The modeling task questionnaire is available in the Appendix and was
structured according to each process step, totaling 25 items. The items covered questions such as
number of predictors, imputation strategy, imputation strategy, feature importance, etc.

The total time alloted for the task was 60min, with 15min for general question answering, 15min for
watching the introductory video (tutorial), 15min to perform the task on the tool and finally 15min
for filling out the form. Subjects were instructed to finalize the questionnaire after 15min, even if not
completely answered.

Evaluation Metrics. The evaluation metrics utilized address three aspects. The first is concerned
with user activity while performing the clinical modeling task. For this, I measured time elapsed
for modeling, number of mouse clicks and mouse moves, distance covered by the mouse and an
overall index of mouse activity and number of keyboard keys pressed. In order to record this
information automatically, I developed a Java application using JNativeHook4 which ran on the
subject’s computer. Subjects were instructed to start and end the monitoring tool while utilizing the
respective clinical modeling tool. The second metric sought to assess how many of the total items on
the task questionnaire could be answered according to each process step, i.e., task completion. Finally,
the answers provided were compared to a reference in order to assess task correctness, i.e., out of the
items reported how many of them were correct.

Results. The results obtained for the user activity metrics are depicted in Figure 3.12 as violin plots.
In addition to the information present in a box plot, violin plots also present the probability density

3https://go.rapidminer.com/am/
4https://github.com/kwhat/jnativehook
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Figure 3.10.: Characterization of the study design as UML diagram. Before the clinical modeling task, users are
randomized, and each group is assigned either MORPHER or another tool. The users first watch a video
explaining how to use the respective tool, i.e., a tutorial, and then receive a document with task description.
The whole study procedure was capped at one hour.
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Figure 3.11.: Activity monitor developed for the user test. It records user activity when active. Subjects were
asked to provide the monitoring report generated by the tool.

of the data at different values, smoothed by a kernel density estimator [109]. Note that the metrics
‘mouse moves’ and ‘mouse distance’, as measured by the Euclidean distance in pixels between two
points, are provided in natural log scale (ln) for better visualization.

In the study cohort under analysis, time elapsed for MORPHER had a wider range variance than
RMG, albeit with a similar median (white dot) at 7.5 and 6.5 minutes respectively. The interquartile
range (black bar) for mouse clicks and mouse distance differed substantially across tools, to the
detriment of MORPHER. With respect to mouse moves, MORPHER presents more uniformity in
comparison to RMG, i.e., lower variance and extreme values. However, mouse activity (mouse
distance in pixels (px) / mouse moves) had both highest frequency (probability density) between 5

and 10px/move. Finally, regarding keyboard input, the range of variance was markedly higher for
MORPHER, with substantially smaller keyboard input necessary for RMG.

A normality test for each of the metrics using Shapiro-Wilk test returned normality for all variables
except time elapsed and keyboard keys pressed at α < 0.05. However, small samples often pass
the normality test, since these tend to have low power to reject the null hypothesis, i.e., that data
is normally distributed [110]. Therefore, following Collins et al.‘s recommendations, I opted to
utilize the non-parametric Mann-Whitney U statistical test for calculating p-values, which takes into
account medians rather than means of independent samples [111]. Under this test, the null hypothesis
assumes distributions of both populations are equal. At α = 0.05, the null hypothesis can be rejected,
i.e., differences are statistically significant, for mouse clicks and keyboard keys pressed.

With respect to performance at modeling task, namely completion and correctness, the results ob-
tained are reported in Figure 3.13 for each of the clinical modeling process steps and tools respectively.
Task completion measured how many of the total items in each step could be answered (regardless of
being correct or not). Results for predictor handling and model evaluation were similarly complete,
with subjects using MORPHER completing approximately 20% fewer items in the interpretation step
as compared to RMG, 64% vs. 22% respectively. As for the model generation step, MORPHER subjects
were able to answer 100% of the items required vs. 88% in RMG. As to task correctness, MORPHER
presented substantial advantages with respect to model generation (100% vs. 63%), while performing
comparatively worse in model interpretation, 64% vs. 86% for RMG. While predictor handling was
similar for both tools, MORPHER presented an advantage with respect to data selection and model
evaluation. Similarly to user activity, given the limitations of the sample size, which hampers the use
of parametric tests, I utilized the Mann-Whitney U statistical test to measure statistical significance.
At the selected significance level, α < 0.05 no significant results could be obtained. Table 3.5 shows
the results obtained for each metric/process step.
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Figure 3.12.: User activity in comparison for both tools, including time elapsed, mouse clicks, mouse moves and
distance, both natural log-scale (ln), mouse activity and keyboard keys pressed for N=12 (6 each tool). For
α < 0.05, mouse clicks and keys pressed are statistically significant.
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Figure 3.13.: Task completion (A) and correctness (B) for both tools along the different process steps for N=12

with 6 for each tool.

Table 3.5.: Statistical testing of modeling task results utilizing Mann-Whitney U test comparison MORPHER and
RapidMiner Go. Null hypothesis assumes that the two samples come from the same distribution. At α = 0.05
no significant results could be obtained.

P-value
Metric

Dataset
Selection

Predictor
Handling

Model
Generation

Model
Evaluation

Model
Interpretation

Task Completion 0.402 0.465 0.168 0.202 0.283

Task Correctness 0.256 0.339 0.090 0.192 0.342
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3.5.3. Technology Acceptance

To assess the extent to which one could use the developed platform in actual clinical practice, I carried
semi-structured interviews with practitioners coming both from a data science and clinical research.
Additionally, drawing the on the Unified Theory of Acceptance and Use of Technology (UTAUT), we
evaluated both the performance expectancy and effort expectancy of my approach [112].

Study Design. In order to qualitatively assess the degree to which the solution developed could
be accepted by potential users, I carried out a number of semi-structured interviews limited to a
time frame of 60min. In these, subjects had the opportunity to interact with the tool assisted by the
interviewer, reply to questions and pose questions themselves as needed, following extant literature
recommendations [113] on qualitative research. Informed consent was obtained by participants via an
electronic formular. Participants were thus asked, how could this tool:

• Question 1: support clinical predictive modeling? This was aimed to elicit highlights and positive
aspects identified by the interviewees, i.e., positive aspects, and/or advantages.

• Question 2: be detrimental to clinical predictive modeling? Question targeted at understanding
potential pitfalls and short-comings not currently addressed., i.e., negative aspects, and/or
disadvantages.

• Question 3: be improved to reflect actual needs? Item focused on identifying unmet needs,
important in the context of clinical predictive modeling.

The interview responses were then clustered according to the clinical predictive modeling process
steps (cf. Section 2.2) and repeated mentions of the some topic/aspect were counted. The interview
section of the study was followed by a structured on-line questionnaire aimed at capturing potential
users’ perspectives in a structured fashion, available in the Appendix.

Study subjects. Study subjects comprised a cohort of experts either working as research clinicians or
data scientists with varying levels of experience with clinical predictive modeling, allowing a balanced
view of the platform. The interview cohort include 17 subjects in total (N=17) with 7 reporting a
predominantly data scientist background and 10 reporting a predominantly clinical research and/or
medical background. They were interviewed in person and via Zoom. Interviewing subjects for
acceptance or usability studies is always associated with time and cost investment. A trade-off must
be then met between effort and utility. As guide for such studies, Nielsen & Landauer developed a
mathematical model in which maximum cost/benefit ratio at four interviews, with costs still paying
off at 16 interviews, at which point marginal utility is decreased [114].

Evaluation Metrics. Utilizing two of the independent variables of Venkatesh et al.’s UTAUT, I
sought to investigate prospective user technology acceptance in terms of two constructs: Performance
Expectancy (PE) and Effort Expectancy (EE).

On the one hand, PE seeks to ascertain how the users expect the given tool to perform. It is sub-
divided into three other subconstructs. The first one is perceived usefulness, which establishes whether
practitioners would be willing to use the tool develop in future projects of their own. The second is
job fit, which seeks to assess to what extent the system capabilities improves job performance. Finally,
relative advantage establishes the degree to which a given tool is better than its precursor [112].

On the other, EE aims to capture users’ perceptions on how complex it would be use the tool, since
a specific learning curve must be overcome before a user can be said to be proficient in tool use.
Similarly to PE, its constituent subconstructs are three-fold. First, perceived ease of use helps to assess
users’ perceptions with regards to how effortless they perceive the tool to be. Second item refers to
complexity, aimed at eliciting the extent to which a system is hard to use and/or understand. Finally,
ease of use captures the degree to which subjects believe the tool is ease to use. Each of the metrics
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has a number of items associated with it, which have been presented to test subjects in a Likert-type
scale [112].

Table A.2 provides an overview of each construct and metric along with the attending items.

I am experienced
conducting and

evaluating clinical
predictive modeling

studies.

I am experienced
using Python and/or

R languages for
machine learning

(coding).

I am experienced
using packages such

as SAS, SPSS or
tools such as Weka

and Orange.
Question

0

1

2

3

4

5

A
ns

w
er

Research clinician
Data scientist

Figure 3.14.: Profile of subjects interviewed (N=17). Data scientists consider themselves on average to be more
knowledgeable in the topic.

Results. In the following, I report on the results of the semi-structured interviews with experts and
the results obtained concerning technology acceptance questionnaire.

Table 3.6 provides the result of the semi-structured interviews clustered by process step. The
numbers in circle refer to how often that specific item was mentioned across the interviews. With
respect to Question 1, i.e., positive aspects, in particular research clinicians highlighted often the fact
that MORPHER is easier to use in comparison to other tools, considering it a valuable tool for use
in health research. Additionally, the possibility to support collaboration between research clinicians,
develop quick prototypes and enable model validation between clinics was considered relevant by at
least three interviewees. Data scientists, conversely, highlighted other aspects, such as the availability
of comprehensive graphs for evaluation. Regarding Question 2, i.e., negative aspects, the item most
often cited during the interview by data scientists was the lack of knowledge of clinical predictive
modeling by clinical researchers (six times). Conversely, this was cited by research clinicians themselves
only half as often (three times). In particular, other aspects not related to the process (NR) in Table 3.6
featured prominently during the interviews. Examples are legal challenges on storing models and
cohorts, i.e., data privacy, and difficulty interpreting the results of model performance. When it comes
to suggestions, i.e, Question 3, a summary of the statistical methods used, e.g., following TRIPOD,
was comparatively often mentioned during interviews (three times) followed by the need of a video
tutorial on how to use the tool. Data scientists, in turn, highlighted the need for mode advanced forms
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of data pre-processing and formatting and, among others, the possibility to use a ‘fully-automated
mode’. This mode of operation would completely automate modeling with default parameters, which
could be optionally fine-tuned.

Table 3.6.: Expert interview results. Numbers in circles illustrate how often the item was mentioned. Abbrevia-
tions: DS=Dataset Selection, PH=Predictor Handling, MG=Model Generation, EV= Evaluation and Validation,
MI=Model Interpretation, NR=Not Related to Process.

Question Item Step
Research
Clinician

Data
Scientist

Question 1

Easier to use in comparison to other tools MG 4 –
Cohort exploration features are helpful DS 3 –
Supports the collaboration of data scientists and medical experts MG 3 –
Increases transparency (options for modeling available) MG 1 –
Glossary feature is helpful MG 1 –
Possibility to learn while using the tool NR 1 –
Provides reference on existing models EV 1 –
Helps researchers keep an ‘experiment journal’ while modeling MG 1 –
Comprehensive graphs for evaluation EV – 2

Provides ready-to-use baselines for further algorithm development EV – 1

Useful tool for use in health research, including own use cases NR 4 1

Enables validation across clinics EV 4 1

Can be used to generate model prototypes quickly MG 3 1

Question 2

Difficulties interpreting the results MI 2 –
Limited usefulness for practicing doctors NR 2 –
Fewer parameters in comparison to other tools MG 1 –
Lack of transparency in the methods used MG 1 –
Does not support cohort extraction features PH 1 –
Lack of trust from IT departments NR 1 –
Makes it easier to make mistakes while modeling MG – 2

Limited handling of categorical data, e.g., imputation PH – 2

Lack of data quality control/analysis DS – 1

Lack of knowledge on clinical predictive modeling by medical researchers NR 3 6

Legal challenges on storing models and/or cohorts (data privacy) NR 3 2

Different terminology than that used by doctors NR 1 1

Question 3

Summary of statistical methods used, e.g. using TRIPOD EV 3 –
Provide summarized statistical information for cohorts DS 1 –
More elaborate transformations for features (threshold binning, etc.) PH 1 –
Cohort matching function for model validation PH 1 –
Improve validation metrics: graph types, mean values, etc. EV 1 –
Include a warning that only anonymized data can be uploaded DS 1 –
Functionality to download models for further refinement MP 1 –
Provide different internal validation set-ups, cross-validation, etc. EV – 1

Include more advanced forms of model validation and graphs EV – 1

Provide functionalities for federated learning MG – 1

Provide help on what models/settings to use MG – 1

Provide fully-automated mode (auto-parameter setting) MG – 1

Advanced data handling for data pre-processing and formatting PH – 2

Support for deep learning algorithms MG – 1

Recommendation engine for modeling settings MG – 1

Perform model interpretation during training MI – 1

Short video and/or tutorial on how to use the tool NR 2 1

Support for other data import files, such as SPSS and Excel DS 1 1
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Figure 3.15.: Compiled categorized interviews. Abbreviations: Q1-Q3: Questions 1 to 3 respectively, from the
inner to outer circles.

Furthermore, Figure 3.15 displays how often each of process steps were mentioned throughout
the interviews, by combining the counts for each item in Table 3.6 for both research clinicians and
data scientists. This is an attempt at capturing what process steps seem to be most relevant for the
interviewed subjects. Positive aspects regarding model generation were mentioned 44% of the time,
followed by evaluation and validation (28%) and non-processed related issues (18%). For negative
aspects, non-process related issues dominated the interview items with 66% of items referring to
such issues. Model generation also featured prominently in suggestion for improvement, followed
by non-process related issues with 18% and predictor handling, as well as evaluation and validation,
both with 12%.

Finally, Figure 3.16 and Figure 3.17 display the different subconstructs for PE and EE, respec-
tively, as diverging stacked bar charts, an often recommended visualization approach for Likert-scale
items [115]. To assess the internal consistency of each subconstruct, I applied Cronbach‘s alpha, which
should optimally be higher than 0.7 [116]. A higher than 0.7 Cronbach’s alpha was obtained for all
subconstructs in both PE and EE.

Regarding PE, perceived usefulness, job fit and relative advantages have been to a large extent
well-received by the respondents, with the bulk of answers leaning towards the positive end of the
scala (strongly agree). Some respondents, however, were much more critical, particularly with respect
to relative advantage, where a higher proportion of neutral and negative responses can be ascertained.
When it comes to EE, perceived ease of use, complexity, and ease of use were seen favorably, with
most answers lying in the positive spectrum (agree and strongly agree). For reporting and consistency,
coding for the subconstruct ‘complexity’ was reversed, with ’completely disagree’ coded as a favorable
answer and so forth. In the final analysis, one item of this subconstruct removed from the analysis,
because of an error in the on-line formular.

3.6. Discussion

Discussion shall focus on the three aspects covered in the evaluation, namely, comparison to current
approaches with respect to the functional perspective and clinical modeling task, as well as technology
acceptance.
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Figure 3.16.: Results obtained for the construct Performance Expectancy (PE). Evaluates the extent to which the
tool is likely to fulfill user’s performance expectations.
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Figure 3.17.: Results obtained for the construct Effort Expectancy (EE). Evaluates the how the user perceives the
effort required to learn and to use the tool .

3.6.1. Functional Perspective

Examining the landscape of IT support for clinical predictive modeling as laid out in Table 3.4,
researchers seem to be faced with a trade-off: on the one hand, general-purpose tools, feature-rich,
but requiring high levels of technical expertise; on the other, biomedical software that automates to
a certain extent modeling tasks but fail to address critical aspects of the process. Statistical packages
are currently the de facto standard for model development, but using them in a collaborative context,
e.g., for model validation could prove cumbersome. Additionally, support for data standards is scarce
or non-existent in those tools, except the ones provided by the OHDSI initiative5 such as ATLAS and
PLP package [78].

ML Suites such as RapidMiner manage to automate prototyping to a considerable extent, relying
on easy-to-use, visual interfaces. Focused on general practitioners, rather than clinical modelers, these
tools might require a steeper learning curve than my approach. Furthermore, these tools offer no
seamless way to share models across institutions, though admittedly this could be achievable by means
of manual file exchange. Even in such a scenario, comparing model metrics would require manual
summarization, unlike my approach, in which metrics across different validation experiments are
kept in a centralized fashion. Moreover, even though biomedical software does present considerable
advantages to practitioners, they typically do not offer the tools needed for ad-hoc data handling,
such as imputation, scaling and the like. Exception to this observation is the tool MLBCD, which
offers automatic pivoting of features [79]. Finally, the use of the AG Worker Framework automates job
execution and utilization of computational resources via paralelization of long-running tasks, which
cannot be easily achieved unless custom extensions are used, such as Weka-Parallel [117].

5https://www.ohdsi.org/
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In summary, the use of on-premise and cloud resources, i.e., a hybrid approach with MORPHER,
makes it possible to retain crucial information on model metrics, algorithms hyperparameters and the
model themselves centrally while keeping sensitive data, i.e., patient data, within the confines of the
participating institutions. Without a similar set-up, manually keeping records of individual metrics
and exchanging models via e-mails and data privacy issues substantially hamper collaboration. As
such, tool developers should conceive of IT solutions that encompass the broader scope of clinical
modeling needs in collaborative environments.

3.6.2. Clinical Modeling Task

Overall, the results obtained during the user activity assessment seems to indicate a clear advantage of
RMG over MORPHER. While the statistical significance of the results could not be established for all
user activity metrics, differences in mouse clicks and keyboard keys pressed seem to be particularly
significant (p < 0.05). This is explained by the fact that RMG is a highly automated ML tool, where
very little freedom is given to the user to parameterize the experiments. This makes the tool indeed
very convenient to use, but at the expense of transparency. Conversely, MORPHER automates the
predictive modeling process only to a certain extent, requiring manual input for certain parameters,
such as imputation methods. In effect, this was a conscious design decision: the TRIPOD guidelines
recommend that researchers report on a number of key decisions made, such as validation strategies,
imputation methods, etc. As such, while MORPHER is somewhat more laborious to use, notably with
respect to keyboard input, users can expect more transparency, even if connected to a slower learning
curve.

This aspect is more clearly illustrated in the results obtained in the metrics task completion and task
correctness. Except for the step ‘model interpretation’, MORPHER was at least equivalent or better,
most noticeably with respect to ‘model generation’ when evaluating task correctness. The results poor
results obtained by MORPHER with regards to interpretation can be explained by the fact that the
feature importances were presented in different user views within the tool, as opposed to RMG, where
feature importance information is contained in one page. Future iterations of MORPHER should take
this account. It is worth noting, however, that while RMG provides only one interpretability method,
MORPHER provides several, including a comparison of methods.

3.6.3. Technology Acceptance

In the interviews conducted, I reached the numbers recommended by Nielsen & Landauer [114]. As the
number of interviews increases from the optimum (four), the same aspects re-emerge across interviews,
as illustrated by the counts in Table 3.6. Also considering users’ perceptions on performance and effort
expectancy, results indicate that research clinicians tended to view the tool’s use more favorably than
data scientists. This is likely evidence of the fact that MORPHER is geared towards rapid prototyping
of CPM, therefore lacking advanced configuration options desirable from a data scientist’s perspective.
Admittedly, striking the right balance between automation and freedom of configuration a complex
undertaking. In particular, data scientists highlighted the potential of making mistakes by researchers
who might not be knowledgeable in the field of clinical predictive modeling. While this is a valid
criticism that applies to any support tools, it must be noted that MORPHER is oriented towards the
TRIPOD guidelines, in an effort to achieve more transparency. At any rate, following this feedback, I
implemented a ‘fully automated mode’, with optional manual configurations (cf. Figure 3.9).

Furthermore, aspects not directly related to the clinical modeling process itself, featured prominently
in the interviews, as illustrated by Figure 3.15. These merit extended discussion, most notably
regarding two aspects. First, lack of knowledge on clinical predictive modeling seems to be a concern
for both data scientists and research clinicians, which could hamper utility and adoption of the tool.
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Indeed, this aspect is indeed a concern and has been reflected in methodological shortcomings in
publications in the field [9]. This is mitigated by MORPHER in that standardized pipelines are available
(and reusable) which have been developed and validated by data scientists in collaboration with
research clinicians. Further, ample use of video tutorials explaining the basics of the field, especially
with regards to evaluation of CPMs could be embedded in the tool itself. The current version of
MORPHER supports extensive glossary items that provide quick explanations of importance concepts,
along with the pertaining literature references.

Second, issues pertaining to data privacy and trust also played a substantial role during the inter-
views. More specifically, research clinicians and data scientists alike raised concern with whether data
stored in MORPHER complies with privacy regulations, be it clinical data or the models themselves.
With regards to data uploaded to the cloud instance of MORPHER, it is up to the user to make sure
that the data is anonymized or at least k-anonymized, and a proper warning has been included to that
effect. For the metadata that is uploaded from the local to the cloud instance (cf. Figure 3.5), it com-
prises only descriptive statistical data, which is usually also required for peer-reviewed publications.
However, the Fundamental Law of Information Recovery postulates that “overly accurate” answers
to too many questions may completely compromise privacy [118]. Therefore, summary statistics is
not entirely exempt of privacy risks. Similar criticism can be leveled at storing and making available
trained ML models: these models have theoretically the capacity to ‘memorize’ information on the
training data and be thereby potentially vulnerable to privacy attacks [119]. In order to overcome those
pitfalls, the field of privacy-preserving data analysis seeks to establish ‘differential privacy’, making it
possible to learn useful information on the population but nothing on the individual [120]. This field
of study and the accompanying precautions and strategies to achieve differential privacy lies beyond
the scope of this dissertation. Nevertheless, production-grade deployment of a similar solution should
include an extensive treatment of those aspects.

3.6.4. Limitations

In this section, I outline some of the limitation inherent to the platform and the evaluation studies
developed, i.e., limitations on the functional view, clinical modeling task and technology acceptance.

Functional View. A number of limitations apply to my platform (MORPHER). First, this work is
concerned with prognostic classification models. Time-to-event prediction models are also relevant
in research and will be implemented in future iterations. Second, in its current state, the platform
still does not fully address the myriad of issues pertaining to data preparation prior to modeling.
Complex tasks such as pivoting and feature extraction from time-series data must be executed outside
the platform. A similar issue applies to datasets used for validation: collaborating institutions should
make sure that the trained models are either 1) based on standard formats in the first place, such as
OMOP, or 2) that the validation dataset is matched to the derivation dataset in predictor definitions
and format. Given the arbitrary complexity of this task, currently the platform does not support it.
Alternatively, advanced users can extract the required data from a OMOP-compliant database the
package InspectOMOP [121]. Finally, we addressed only functional requirements concerning modeling,
validation and model interpretation, but other areas are equally important, such as model presentation
and integration into clinical care, which shall be addressed in future work.

Clinical Modeling Task. Studies such as the one proposed usually cannot avoid spurious effects
resulting from selection bias [118]. I sought to mitigate this effect by sampling from a somewhat
homogeneous population without advanced knowledge on predictive modeling itself, but one cannot
rule out the influence of other factors not controlled for, such as familiarity with IT tools in general.
Particularly for MORPHER, variance in the results seemed higher than for the the control group
(RMG). This effect is likely further exacerbated by the small sample size of the study. Even calculating
the required sample size is difficult, since the overall population of clinical researchers cannot be
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estimated accurately. Furthermore, as demonstrated by the statistical tests conducted, significance at
α = 0.5 could not be established for all the metrics utilized, thereby casting doubt on the validity of the
results obtained. Another limitation is the nature of the clinical modeling task itself: time constraints
required a simulated use case, real-world usage beyond the scope of a constrained test might reveal a
different pattern altogether. This underscores the need for further testing in future work.

Technology Acceptance. While also subjected to similar selection bias effects, the wide spectrum of
experience and expertise in the interviews carried out contributed positively to the range of feedback
obtained. However, given the limited scope of the interview (60min), it can be argued that the time
was not sufficient for the subjects to develop a truly informed opinion of whether they could accept
the technology or not. A scenario in which the tool had been continuously used over an extended
period might provided a less biased estimate. Further, inherent to the interview instrument is the idea
of ‘courtesy bias’, in which interviewees tend to provide positive assessments because just they do not
want to ’offend’ those seeking their option [122]. Regardless of this effect, the interviews carried out
provided valuable insights into how the tool can be further developed.

3.7. Conclusion

Clinical predictive modeling is a complex undertaking that requires adequate tool support. An
examination of existing related work revealed that different solutions address the needs identified
to varying degrees, with gaps concerning particularly model development and validation. While
challenges remain concerning aspects such as data harmonization, privacy-preserving data mining
and the potential vulnerability of ML models to privacy attacks, MORPHER seeks to mitigate some
of these deficiencies. It facilitates the development and validation of CPMs making use of a visual
interface for modeling that is based on a standard notation (BPMN 2.0) that can be executed in
distributed computing infrastructure. MORPHER’s virtualized architecture leveraging Docker can be
run either on-premise or on the cloud, providing the appropriate infrastructure for model exchange
and collaboration between research clinicians and model developers. As such, the tool can help
expedite the model prototyping and validation while making a contribution towards standardization
and reproducibility.

Building on the insights gained during development and evaluation, implications for future devel-
opment of tools support clinical predictive modeling include the following:

Provide better support for data harmonization. While there is a growing trend towards standard-
ization in EHR data, this is a long process, which requires conversion of existing datasets. These
datasets could be potentially used for predictive modeling and model validation if comprehensive data
harmonization tools are integrated into existing solutions. MORPHER offers support for a couple of
basic data transformation, such as imputation, encoding, etc. but does not support complex scenarios,
such as concept mapping.

Improve predictive modeling education. The interviews revealed that concepts related to the
development and especially evaluation of predictive models are not readily accessible to researchers.
While MORPHER integrates an on-screen glossary and a step-by-step process, predictive modeling
tools present an opportunity for targeted learning if they include an ‘educational mode’.

Strike a balance between configuration and automation. This aspect goes hand-in-hand with
the previous one: while automation hides complexity from the user, transparency is also required,
especially when it comes to publications. As such, tools should offer automation, but optional
configuration. In MORPHER this is achieved by means of an optional ‘fully-automated mode’.

Provide more transparency with regards to data privacy. In MORPHER, the only information that
leaves the local instances are cohort information that can’t be in any way traced to individual patient
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that and serialized ML models. However, this is not readily evident and relies on trust. Predictive
modeling tools should provide users with the possibility to verify that privacy cannot be harmed, for
example by means of third-party security certifications.

Support federated learning. A growing body of research is now focusing on learning over dis-
tributed datasets in the form of federated learning [123]. User-facing predictive modeling tools should
also provide functionalities that enable this approach of distributed learning. While not currently
implemented in MORPHER, new Jobs could be added to the Toolkit to address this scenario with
relative ease.

Code Availability

The cloud version of the platform is accessible on-line 6. The machine learning component, MORPHER
Toolkit, is openly accessible via GitHub 7.

Credits

Next to my contributions in conducting requirements engineering, designing, developing and evaluat-
ing the technical artifacts discussed, the following credits are due with respect to the work presented
in this chapter. Orhan Konak and Benjamin Bergner contributed towards evaluation and comparison
to other tools. Philipp Bode implemented extensions to the AG Worker Framework to support MOR-
PHER Jobs. Conrad Lempert implemented improvements to make the MORPHER Web interface more
user-friendly. Matthieu-P. Schapranow served as technical advisor and reviewed the final manuscript
of the MORPHER paper [1].

6https://we.analyzegenomes.com/mpr
7https://github.com/hpi-dhc/morpher-toolkit
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4. Case Study: Acute Kidney Injury

"I asked the doctor; he said he couldn’t live more than three days. But can they be
sure?"

—Leo Tolstoy, Anna Karenina (1878)

Can machine learning help predict complications? In this chapter, I make use of the
functionalities provided by MORPHER to address the development, validation and interpretation

of a predictive model for a concrete use case, tackling prediction of Acute Kidney Injury (AKI)
following a surgical procedure. An introduction will be followed by related work, methods, results
and discussion sections. In each of these sections, issues pertaining to development, validation and
interpretation are dealt with. This chapter illustrates the issues mentioned in the earlier parts of this
work.

4.1. Introduction

Patients suffering with chronic or acute heart disease can end up requiring surgery to help manage
or cure this condition. In particular, surgeries utilizing a cardiopulmonary bypass are particularly
deleterious for the kidneys, potentially giving rise to AKI. Indeed, AKI affects up to 30% of all patients
after cardiac surgery. Among others, this intervention has been linked to a series of complications,
such as increased mortality, comorbidities and adverse outcomes for patients [18].

Identifying patients at high risk for developing AKI before the surgical intervention can assist care
providers in adopting targeted renal-protective strategies, such as increasing renal blood flow and
avoidance of medications that can impact the kidneys [124]. There is little consensus on what drugs
can effectively prevent AKI onset in heart patients. However, early detection can be relevant for
perioperative patient management and clinical trial recruitment [125]. Therefore, a number of studies
have been targeted at developing accurate risk scores and CPMs for this disease.

Previous work dealing with the task of predicting heart surgery-associated AKI take into account
biomarkers and/or clinical data before, during and after the surgical intervention. Particularly concern-
ing biomarker-based approaches, measurements of interest are usually taken after the surgery [126],
thus posing barriers for use prior to the intervention. In this work, I derive a CPM which utilizes
only preoperative variables in order to predict the onset of AKI. This CPM is based on clinical data
collected prior to surgery from MIMIC-III [127], here referred to as derivation cohort. For this task, I
compare the performance of different prediction algorithms, including both easily interpretable, as
well as complex ensemble approaches.

ML algorithms are prone to learning particular features of a dataset, which might not be transferable
to other datasets. Therefore, to investigate how the CPM developed performs on completely unseen
data, I discuss the results of applying this model on two external validation cohorts, one from a German
and another from an American university hospitals, German Heart Center (DHZB) and Mount Sinai
Hospital. It is worth mentioning that, while essential, validation of prediction models is only rarely
performed in the literature [9].

ML techniques, e.g., deep learning, tend to perform better than linear modeling approaches when
it comes to discriminative performance, but often fall short of providing adequate interpretability.
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Indeed, striking the right balance between predictive performance and interpretability is key for
deploying clinical predictive models in practice [128]. Therefore, in this work, I make use of different
interpretability approaches to provide interpretable explanations for the model predictions and discuss
to what extent these results reflect medical knowledge.

This chapter’s experimental set-up is illustrated by the Business Process Modeling Notation (BPMN)
diagram in Figure 4.1.

4.2. Related Work

The following sections outline related work regarding the development, validation and interpretation
of prediction models for AKI.

4.2.1. Model Development

Current work on AKI prediction after heart surgery relies on serum or urine biomarkers, such as
neutrophil gelatinase-associated lipocalin [129]. Concerning prediction models using electronic health
data, an early approach has been the Cleveland score [130] derived from a large cohort of open-heart
surgery patients, which was followed by the publication of the AKICS score based on a cohort of
Brazilian patients [131]. In a multicentric, multinational study, Mehta et al. developed a score using the
National Cardiac Surgery Database of the Society of Thoracic Surgeons (STS), achieving satisfactory
results [132]. Prediction models developed until now have been largely based on logistic regression,
with the AKICS score presenting the best performance upon derivation. Even considering possible
overfitting effects, the AUROC of most models range from 0.74 to 0.84 [133].

More and more, ML techniques are also being utilized for AKI prediction. Thottakkara et al.
utilized a number of ML techniques, with Generalized Additive Model as the best-performing for
AKI prediction in a large patient cohort (N=50,318) with AUROC=0.858 [134]. With a substantially
smaller cohort (N=212), Legrand et al. achieved AUROC=0.760 using a super learner estimator [135].
In a similarly sized cohort of heart surgical patients (N=212), Eyck et al. were able to achieve
AUROC=0.834 [136]. An ensemble of learners achieved the best result in a cohort of North American
patients with AUROC=0.740 with N=25,521 [137]. Flechet et al. achieved AUROC=0.84 using random
forests on a general surgery multicenter cohort (N=2,123) for AKI stage 2-3 [138]. Furthermore, in a
cohort of Korean patients (N=2,010), Lee et al. reported AUROC=0.78 with gradient boosting machine
(XGBoost) [139]. More recently, Tomašev et al. within Google DeepMind used Recurrent Neural
Networks (RNN) on a large-scale cohort of US veterans (N=703,782), achieving [140] AUROC=0.83.
In contrast, my model based on GBDT achieved AUROC=0.90 (N=6,782).

4.2.2. Model Validation

As a rule, model performance obtained on the validation cohort is usually poorer when compared
to that of the derivation cohort, with models often showing “disappointing accuracy" on new co-
horts [143]. Since the publication of those scores, a literature review recommended the Cleveland
score, as it is the most frequently validated score [133]. However, the Cleveland score presented poor
discrimination metrics when validated in a Chinese cohort, suggesting limited generalizability for
populations not predominantly Caucasian [142]. The Simplified Renal Index (SRI) strived to achieve a
succinct set of predictors, but ultimately performed worse than the Cleveland score on a validation
cohort of the Mayo Clinic [141]. It is worth noting that excepting the work of Flechet et al. and
Tomašev et al. none of the other works offered an external validation of their ML models.
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Figure 4.1.: Graphical abstract depicting the set-up of the experiments conducted in this chapter as a Business
Process Modeling (BPMN) diagram. First models are developed on MIMIC-III database (derivation cohort) and
evaluated on German Heart Center (DHZB) and Mount Sinai (validation cohorts). Model validation follows
two set-ups: 1) applying trained models and 2) re-training models. Model interpretation is then performed on
all cohorts, obtaining feature ranks.
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Table 4.1.: Overview of CPMs for cardiac surgery-associated AKI. Abbreviations: CPM=Clinical Prediction Model;
N=number of patients; AUC=Area Under the Curve, LR=Logistic Regression GAM=Generalized Additive
Model, SL=Super Learner, GBDT=Gradient-Boosting Decision Tree, EL=Ensemble of Learners, RF=Random
Forest, RNN=Recurrent Neural Network, NS=Not Specified

Type CPM N Model AUROC

Regression
Models

Cleveland Score [130] 33,217

LR

0.81

STS [132] 86,009 0.83

AKICS [131] 603 0.84

SRI Score [141] 2,566 0.78

Ng et al. [125] 28,422 0.77

Jiang et al. [142] 7,233 0.74

ML Models

Thottakkara et al. [134] 50,318 GAM 0.85

Legrand et al. [135] 212 SL 0.76

Eyck et al. [136] 810 NS 0.83

Kate et al. [137] 25,521 EL 0.74

Flechet et al. [138] 2,123 RF 0.84

Lee et al. [139] 2,010 XGBoost 0.78

Tomašev et al. [140] 703,782 RNN 0.83

Our approach 6,782 GBDT 0.90

4.2.3. Model Interpretation

Despite the fact that black-box models may achieve better discriminative performance, clinicians tend
to favor interpretable prediction models over opaque, ML models [144]. As such, in addition to
applying new algorithms on the problem, I employ interpretability methods to lend intelligibility to
the algorithms’ predictions. In addition, the need for model interpretability is driven in part by laws
and regulations applicable to automated algorithms which call for more transparency [145].

Doshi-Velez and Been define interpretability as “the ability to explain or to present in understand-
able terms to a human”, which can be assessed globally, i.e., for the model as whole, or locally, i.e., for
specific instances [55]. Taken together, these strategies rely on deriving surrogate models based on the
original model to be explained. They are therefore termed global and local surrogates, respectively.
Additionally, if one is dealing with a tree-based model, is it possible to derive rank of feature impor-
tance, which also provides some degree of transparency as to how the model works at the global level.
Given that multiple interpretability methods exist, I follow Hall and Gill’s recommendation, and com-
bine both global and local interpretability methods, along with method-based feature importance and
Shapley values [15]. To date, this is the first work comparing four different interpretability methods
side-by-side applied to the validation of a CPM.

4.3. Methods

This section addresses the methods employed to address this use case. The overall approach is
depicted in Figure 4.1.
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Figure 4.2.: Target AKI cohort obtained the MIMIC-III database. The data comprises 6,782 patient admissions,
thus forming the basis for model development. Credit: extraction and diagram by F. Schneider[3].

4.3.1. Model Development

In the following, I describe the experimental setup for the development of the CPM addressed in this
work. I provide implementation details, such as data used for training, preprocessing and prediction
models used.

Experimental Set-up

I utilized a cohort of intensive care patients from MIMIC-III [127]. From this cohort, an initial feature
set extracted was extracted based on expert consultation and analysis of literature. Following a
number of preprocessing steps and data splitting to obtain training and validation datasets following
the 80:20 ratio, I proceeded to train tree models, DT, GBDT, having LR as baseline. Subsequently,
hyperparameter optimization was performed with gridsearch using 10-fold cross-validation as score.
The models thus trained were then validated on a held-out dataset comprised of 20% of the original
dataset. The 10-fold cross-validation discrimination and calibration metrics for each of the algorithms
are compared side-by-side.

Derivation Cohort

The derivation cohort was extracted from the MIMIC-III database. Holding 53,423 hospital admissions,
the database covers more than 10 years patient records of the Beth Israel Hospital in Boston [127].

The overall model training and validation data was comprised of 6,782 admissions in total. In-
clusion criteria was the occurrence of a coronary artery bypass graft surgery or aortic valve repair/
replacement. The procedures were mapped to the respective Current Procedural Terminology (CPT)
codes. Exclusion criterion was a minimum of 18 years of age, i.e., adult patients). Cohort building is
illustrated in Figure 4.2.
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With respect to the target outcome for model, AKI definition followed the Acute Kidney Injury
Network (AKIN) classification occurring after the surgery. AKIN establishes three stages for AKI with
increasing levels of renal failure. Determination of renal function for AKIN relies on the concentration
of serum creatinine [146]. In the extracted MIMIC-III cohort, the incidence of AKI was approximately
10%, agreeing with general clinical observations [18].

It must be noted that there is a significant imbalance in the derivation cohort with respect to the
number of AKI cases. The cohort has significantly more patients not being affected by AKI as opposed
to those that do present it. As such, model development must account for this class imbalance in
positive and negative cases (cf. Figure 4.2).

Model Features

The initial model features from MIMIC-III were derived from consultations with medical experts and
analysis of extant literature as laid out in Section 4.2. Model features encompass demographics, i.e.,
sex and age, comorbidities, and laboratory markers obtained from blood samples.

The available comorbidities were used to calculate a composite comorbidity index, which provides
a summary of the patient’s overall health status. Specifically, this work relies on the Elixhauser comor-
bidity score, which correlates with disease severity [147]. The score is made up of 30 comorbidities in
total, including, e.g., hypertension, obesity, weight loss, among others.

To capture the effects of longitudinal health variables, the model also includes laboratory tests for
a range of biomarkers. Some of these biomarkers are known to be associated with AKI and renal
function, such as creatinine. The laboratory tests were then averaged on three consectutive days,
respectively, before the surgery.

Since each laboraty test generates three features (one for each day, up to three), plus comorbidities
and demographics, the model relied on overall 103 features, which were then submitted to preprocess-
ing and feature selection.

Feature Preprocessing

Prior to modeling, the features extracted need to be adequately preprocessed. In this work, three main
processing steps apply. First, missing values were imputed, since ML algorithms such as GBDT often
require complete datasets.

To handle missing values, I applied the k-Nearest Neighbors (kNN) imputation method with k=3,
which operates under the assumption that missing values can be approximated by samples that are
most similar to it. The framework implemented in MORPHER is the fancyimpute Python library [88].

It must be noted that the missingness is more prevalent for laboratory values two and three days
before surgery. At the same time, missingness is lowest for routinely collected demographic data.
An overview of each of the features used in the model, long with the prevalence of missing data is
provided in Table A.1.

Feature Selection

In this processing step, I performed tests using different percentiles of top features, using the full set of
features (103), top 50% and top 25%, reporting the results for all the algorithms tested. I chose feature
selection based on the mutual information approach, since it can capture non-linear dependencies
among variables, unlike an F-test, which can capture only linear correlations [148]. The effects of
feature selection on model performance is handled at greater length in Chapter 5.
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Modeling Algorithms

In the following, I outline the modeling algorithms applied, alongside the respective hyperparameters’
configuration and optimization strategy.

Logistic Regression. Usual parameters to adjust for LR include regularization strength and the type
of penalty, L1 or L2. Regularization can improve model performance for unseen data by penalizing
large coefficients in an effort to reduce overfitting or learning training data ‘peculiarities’. Higher
values for λ, or regularization strength, can lead to more sparse models. The library utilized exposes
the parameter C defined as the inverse of regularization strength. The regularization parameter was
set to 1.0 and iterative convergence parameter was set to 1000.

Decision Tree. I applied the Gini impurity measure to calculate optimal splits. Furthermore, to
correct for the class imbalance observed, class weights were calculated according the prevalence
of each class (negative or positive) in the dataset, leading to balanced class weights. By means
of hyperparameter grid search with five-fold cross-validation, a maximum tree-depth of five was
determined.

Gradient-boosted Decision Trees.
This modeling algorithms makes use of an ensemble of small decision trees, i.e., three with a small

depth [32]. By means of five-fold cross validation, an optimal tree depth of three was determined. As
such, in addition to those pertaining to decision trees, hyperparameters related to the ensemble itself
can be tuned, such as the number of composite trees (ensemble size or number of estimators). The
number of estimators applied was 150. Finally, the contribution of each individual estimator can be
regularized by means of a learning rate. The optimal value for this parameter was set to 0.1 after grid
search.

Random Forest. Similarly to GBDT this algorithms belongs to the class of ensemble learners. It
builds different decision trees using random subsets of features. Since prediction is decided by means
of a voting procedure, RF tend to overfit less in comparison to single decision trees. Hyperparameter
optimization led to a number of 300 individual estimators, i.e., trees, each containing up to 16 in tree
depth with balanced class weight.

Model Performance

In order to evaluate performance of the models, I relied on discrimination, calibration and clinical
usefulness.

Discrimination. The first aspect to be assessed in a given classifier is the extent to which it can
correctly discriminate between the occurance or absence of the target variable, i.e., its discriminative
performance. To measure discrimination, I utilized both AUROC and Diagnostic Odds Ratio (DOR), a
metric commonly applied in medicine [38], alongside precision and recall.

Calibration. While discrimination seeks to assess a classifier’s ability to distinguish between pres-
ence or absence of patient outcome (in the binary case), calibration defines to that extent the model
overestimates or underestimates patient risk in different risk deciles. In other words, a calibration
analysis helps to assess how well the predicted probability actually can be observed in real life. Since
the real probability is not known, which is the reason to conduct predictive modeling in the first
place, one can define fraction of positives within deciles and compare that to the mean predicted
probability of the model for each decile. A thus generated plot, i.e., a calibration plot, enables a
graphical assessment of calibration [42].

Clinical Usefulness. Whereas discrimination and calibration shed light on a classifier’s performance
when it comes to discriminating between classes or correctly predicting risk. However, none is
concerned with whether a practitioner should actually use such a model in clinical practice to guide
treatment decisions, especially given that there is often a trade-off between benefits and harms. A
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threshold is usually defined beyond which action would be advisable and based upon which sensitivity
and specificity can be calculated. This relies on the assumption that the relative benefits of a true
positive are comparable to the harms of a false positive, a naive assumption that is implausible in
practice [4].

4.3.2. Model Validation

After model development, I sought to validate the CPM by investigating its performance when used
in two different cohorts, German Heart Center Berlin (DHZB) and Mount Sinai Hospital. In the
following, we elucidate the experimental set-up employed followed by a description of the validation
cohorts.

Experimental Set-up

I utilized two experiment set-ups. The first consisted in running the original model without any
modification, in order to ascertain its generalizability. The second set-up consisted in updating the
original model. In this work, model update consisted in re-training the original classifiers exclusively
on the validation dataset – therefore not including the derivation cohort – while also optimizing the
respective algorithms’ hyperparameters using gridsearch with 5-fold cross-validation. The train/test
split chosen was 80:20. As such, the metrics reported refer to the performance on the held-out test set.

Validation Cohorts

The two cohorts, DHZB and Mount Sinai Hospital, will be described in further detail below.
German Heart Center Berlin (DHZB) Data for external validation was drawn from 54,958 admis-

sions in the period of 2013-2018 at the German Heart Center Berlin (DHZB), a hospital specialized in
the care of cardiac patients. Exclusion criteria entailed admissions of non-adult patients (5,853) and
those that had no surgery or only minor surgery (31,635), with a final cohort of N=14,191 admissions.
In this cohort, AKI incidence was approximately 38.4% (5,449 out of 14,191) and therefore higher than
usually reported in the literature [149], also differing from the AKI incidence in the derivation cohort
(9.83%).

Mount Sinai Hospital Additionally, I extracted a cohort from an American medical institution, the
Mount Sinai Hospital in New York. The Mount Sinai Health System is a large and diverse healthcare
provider, located in New York, NY, which produces a high volume of structured, semi-structured and
unstructured in-patient, out-patient and emergency visits data. In this cohort, patients were included
in the cohort who underwent bypass or valve replacement surgery, while excluding non-adult subjects.
It comprised a total of 25,799 admissions presenting an AKI incidence of 4,51%, commensurate with
rates reported in the literature [149], while being lower than AKI incidence in the derivation cohort
(9.83%).

A complete listing of the features used in the models, comparing the derivation cohort and both
validation cohorts side-by-side can be examined in the Appendix (cf. Table A.1).

4.3.3. Model Interpretation

In addition to development and validating the CPM, I apply four interpretability methods, global and
local surrogate, along with method-based feature importance and Shapley values, to help shed light
on how the ML model works and possibly inform future model updating.
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Global Surrogate

To provide more transparency on the ML models employed, I utilized the approach mimic learning [58].
Based on the approach by Che et al., an interpretable model, i.e., the mimic model, was trained on the
predicted probabilities of the ensemble models, i.e., RF and GBDT [58]. In this approach, the mimic
model is trained on the same features used for the more complex model. In this work, I utilized
Bayesian Ridge Regression (BRR) as mimic model. Similarly to linear regression, which is widely
employed in the medical field, BRR yields coefficients for the respective input features, being therefore
more amenable to interpretation. More importantly, it includes regularization parameters learned
directly from the data as opposed to set manually, which is necessary, e.g., in the case of λ for l2
regularization in Ridge regression. As such, this model has the additional benefit of automatically
shrinking the regression coefficients [150].

Local Surrogate

As local surrogate, I use the interpretability method LIME to shed light on the prediction results of
the GBDT model. LIME uses more comprehensible models, e.g., linear regression, to approximate the
behavior of a given model in the vicinity of the instance/prediction being explained. The algorithm
generates a number of perturbed instances close to the instance of interest, weighing this perturbed
input according to a distance measure. After applying the original model on these perturbed instances,
a linear function is applied to approximate the thus resulting outputs [52]. The coefficients of this
linear function represent the degree of influence of a given feature for the original prediction we
intended to explain. The higher the number of these perturbed instances or samples, the higher the
fidelity of the approximate model, but the higher the algorithm run-time. In this work, I used a sample
size of 25% of the total cohort size.

Method-based Feature Importance

Besides the aforementioned global and local surrogates, I provided feature importance metrics for
selected algorithms. In tree-based methods such as RF, one can estimate the relative feature importance
by computing the decrease in node impurity when using the given feature as split criterion. This
decrease is averaged across all constituent trees and weighted proportionally to the number of samples
it splits, i.e., nodes closer to the root of the tree will be deemed more important [59].

Shapley Values

This interpretability method uses concepts from game theory to calculate feature rankings. Succinctly,
this method considers different ‘coalitions’ of features and averages the marginal contribution of the
given feature when it is added to the respective coalitions of features. Specifically, in this work, I
utilized SHapley Additive exPlanations (SHAP), a computationally efficient alternative to estimating
Shapley values, particularly in the case of tree-based methods [62].

Interpretation Heatmap

As we shall exemplify, the results of applying different interpretability methods differ from one
another, even though some features seem to repeat often across methods. This is a known issue
with such methods: since the underlying strategies for computing the feature importances differ, it
is hard to rely on any single method as representative of the model’s underpinnings. In other words,
robustness or consistency across methods cannot be guaranteed. As such, researchers recommend
making use of different interpretability methods when seeking to interpret a given model [62].
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In order to provide a summary view on different interpretability methods, I devised a heatmap-
like representation of feature importances, which offers a ready-to-inspect perspective on feature
importance across methods. First, the actual feature importance values differ in their numeric meaning.
For example, in method-based feature importance the numeric values represent mean decrease in
Gini impurity. In mimic learning, the feature importance values reflect the regression coefficients of
the surrogate logistic regression model. As such, to allow comparison across methods, the feature
importances must be normalized. I chose to use min-max normalization between 0.1-1 to avoid any
given feature being assigned zero importance (a very low feature importance is still more informative
than zero).

For plotting, the mean feature importance across all methods for a given feature is computed. Then,
I retrieve the K top feature with the highest mean feature importance. When compared side by side,
the outputs of the different interpretability methods provide some insight into the relevance of model
features. The heatmap generated by coloring features and methods according to the intensity of the
given feature’s importance after normalization, thereby allowing comparison between the different
methods.

4.4. Results

This section outlines the results obtained on discrimination, calibration and clinical usefulness, while
interpretation is targeted at feature importance for each of the cohorts.

4.4.1. Discrimination

In this section, I present the performance results achieved using the proposed ML methods. Per-
formance analysis entails AUROC, precision recall and DOR, a metric often utilized in the clinical
context [38].

Derivation Cohort

Table 4.2 reports the selected metrics across all feature selection configurations and models tested,
considering respectively all features, top 50% and top 25% percentiles. DT performed worse than LR
and GBDT for most metrics, regardless of feature selection, except for recall, where it presented a
substantial advantage against the other two approaches, e.g. recall of 0.66 as opposed to GBDT’s 0.48

for the top 50% features.
The different configurations chosen for feature selection demonstrated that the models achieve a

similar performance even when only subsets of the available features are used. Particularly when
it comes to the ensemble models, GBDT and RF, the DOR was substantially improved by removing
features, e.g., from 90.74 to 149.92 for GBDT. As more features are removed, though, performance
begins to deteriorate perceptibly, e.g., a drop of approximately 3% in AUROC when only 25% of the
features are used in the GBDT. However, RF remained constant at around 0.90 AUROC across all
feature selection thresholds.

In summary, the GBDT and RF ensemble classifiers achieved better discriminative performance in
comparison to decision trees or logistic regression. In the case of GBDT, this is most notable when it
comes to precision (40% increase over LR) and AUROC (6% increase over LR), even though it performs
poorly when it comes to recall. Furthermore, GBDT and RF presented substantially better results with
respect to DOR with a 7-fold increase when compared to LR with 50% of features (GBDT).
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Table 4.2.: Precision, recall, diagnostic odds ratio (DOR), and area under receiver operating curve (AUROC) for
AKI=yes achieved with the proposed approach employing logistic regression (LR), decision tree classification
(DT) and gradient-boosted decision trees (GBDT) respectively for different feature selection configurations (all
features, top 50% and 25%). The results were obtained by applying the trained models on a hold-out validation
dataset made up of 20% of the original dataset.

Metrics
MIMIC-III

Precision Recall DOR AUROC

All 50% 25% All 50% 25% All 50% 25% All 50% 25%

LR 0.63 0.63 0.59 0.28 0.25 0.25 19.55 19.14 16.67 0.84 0.84 0.82

DT 0.33 0.35 0.29 0.67 0.66 0.70 10.86 11.22 10.16 0.80 0.80 0.78

GBDT 0.86 0.90 0.62 0.43 0.48 0.32 90.74 149.92 115.50 0.89 0.90 0.87

RF 0.90 0.92 0.86 0.33 0.41 0.42 120.8 169.58 87.54 0.90 0.90 0.90

Table 4.3.: Precision, Recall, Diagnostic Odds Ratio (DOR), and Area Under Receiver Operating Curve (AUROC)
for AKI=yes achieved in the validation cohort, i.e., German Heart Center, with model ‘as is’ (applying derivation
model) and after re-training the model, employing Logistic Regression (LR), Decision Tree (DT), Gradient-
Boosted Decision Trees (GBDT), and Random Forest (RF).

Metrics

German Heart Center

Applying Derivation Model Re-Training Model

Preci-
sion

Recall DOR AUROC
Preci-
sion

Recall DOR AUROC

LR 0.00 0.00 n/a 0.56 0.68 0.33 4.27 0.69

DT 0.68 0.16 3.78 0.52 0.75 0.30 6.08 0.71

GBDT 0.58 0.22 2.54 0.62 0.72 0.42 5.94 0.75

RF 0.90 0.02 14.44 0.70 0.75 0.42 6.90 0.76

Validation Cohorts

With regards to performance in the validation cohorts I analyzed two variants, one considering the
derivation model “as-is" and another by training the algorithms with the local dataset, i.e., model
updating. As expected, a sharp deterioration in most metrics can be observed when applying the
models without any changes on the validation cohorts.

German Heart Center. Validation results are provided in Table 4.3. The AUROC of the ensemble
methods was reduced in 30%, e.g., with respect to GBDT in comparison to the performance of the
derivation model. Exception to this is the precision from the RF classifier, which remained similar to
that of the original model (≈0.9). Performance was deteriorated to such a sharp degree that some of
the metrics were set to zero, because not mathematically definable, i.e., division by zero. After model
update, including hyperparameter tuning with gridsearch, a modest increase in performance could
be achieved with AUROC=0.76 for RF. Nevertheless, the updated model still performed significantly
worse than the original model (derivation cohort). Most strikingly, a difference of about 12% in
AUROC was accompanied by 20 times lower DOR, i.e., 169.58 vs. 6.90 for RF.

Mount Sinai. An overview of the validation results can be found in Table 4.4. For this cohort, in
order to analyze the range of results, I also included the confidence interval in the results reported.
Similarly to the DHZB cohort, the AUROC of RF and GBDT were reduced in 17% and approximately
50%, respectively. Re-training the model, lead to an increase in performance, achieving AUROC=0.84
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with RF. Furthermore, as in the DZHB cohort, a slight difference of about 4% in AUROC was
accompanied by an almost 50% lower DOR, i.e., 22.199 vs. 11.883 for RF. This points towards the
necessity of possibly adjusting the discrimination thresholds in the validation cohorts.

Overall, the ensemble algorithms used, GBDT and RF performed best in derivation and validation
alike, with the exception of LR placed as a close second when it comes to recall. Notwithstanding
these results, performance on validation was significantly worse, even more pronouncedly for DZHB,
with marked differences observed specially with regards to DOR. From this point on, for the sake
of brevity, I turn the focus to the ensemble models, which have performed best, for the analysis of
calibration, clinical usefulness and interpretability.
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4.4.2. Calibration

In this section, I turn to the calibration metrics of the proposed models, in order to investigate the
degree to which the predicted probabilities agree with the observed fraction of positives within the
cohorts. The basis for these results is depicted in the calibration plots in Figure 4.3.

Derivation Cohort

In Figure 4.3, one can observe that for patients with low to moderate observed risk (up to 0.7) both
RF and GBDT systematically overestimate risk, though to a smaller extent for the latter, as evidenced
by the lower Brier score. For patients deemed to be at higher risk range, e.g., > 0.8, the RF classifier
provides a better risk assessment, even in comparison to GBDT. In both cases, applying Platt’s method
(sigmoid calibration) did not substantially improve calibration.

Validation Cohorts

A similar set of observations can be made for the Mount Sinai cohort with respect to RF, with the
model overpredicting risk for low-risk patients. With respect to RF, however, the model presented
better calibration for risk level below 0.7 (fraction of positives). After using Platt’s method, model
calibration could be somewhat improved for RF in both the derivation and Mount Sinai cohort,
achieving lower Brier scores. An exception to both the derivation cohort and the Mount Sinai cohort
is the DHZB cohort. The model predictions are mostly well calibrated, with substantially smaller
Brier score. Yet, minor miscalibrations can be observed for RF as observed risk increases, i.e., from 0.5
fraction of positives on, with the minor underpredicting risk. A similar trend (underprediction) risk
can be ascertained for GBDT in the ranges of 0.5-0.7.
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4.4.3. Clinical Usefulness

We now turn our gaze towards clinical usefulness. By means of the net benefit curve, I seek to
establish a trade-off between risk thresholds where use of the model predictions would be advisable
in comparison to default standards of care (treat all or treat none). The decision curves for all the
cohort and both RF and GBDT algorithms can be examined in Figure 4.4.

Derivation Cohort

Figure 4.4 displays the net benefit curve for all the algorithms under analysis for all three cohorts,
using the re-trained models. The decision curve helps to visualize the trade-off between false positives
and false negatives over different thresholds. Given a predicted probability by a model, the thresholds
represent the cut-off point for determining a positive or negative outcome.

If the model curve lies above the curves of the default strategies (treat all or treat none), one can
consider that the model offers a net benefit over these strategies in the threshold intervals considered.
As such, Figure 4.4 suggests that GBDT provides a net benefit over all risk thresholds, except in the
high risk ranges (> 0.8). In contrast, using the RF model exhibits low or zero net benefit in the
low-to-moderate risk ranges. However, it seems to be better than the default alternative of not treating
all the patients for a threshold > 0.8.

Validation Cohorts

In the case of the DHZB cohort, the distinction between the different models cannot be readily
distinguished, with a roughly equivalent Area under the Net Benefit Curve (ANBC). Furthermore,
using any of the models seems to provide a net benefit over the default strategies for all risk thresholds,
except > 0.8, where the benefits zero out for both models. With respect to the Mount Sinai cohort, not
only there is a marked difference between the two models, but the RF model presents negative benefit
– or rather harm – for most thresholds (roughly between 0.12 and 0.8). Even the GBDT only provides
moderate benefit in lower thresholds (< 0.25), with ANBC=0.

Overall, it can be ascertained that for certain threshold ranges the models provide a net benefit in
both the derivation and DHZB cohort, but the net benefit is uncertain or questionable for the Mount
Sinai cohort. However, these benefits can only be observed in specific ranges of thresholds, also
depending on the algorithm under analysis.
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4.4.4. Model Interpretability

Using the interpretability approaches discussed, I seek to shed light into the ‘black-box’ by providing
the feature importance results for the derivation cohort and both validation cohorts.

Derivation Cohort

For the interpretation of the models in the derivation cohort, I chose one of the ensemble models
(GBDT) because of its clinical usefulness performance and examine it with the selected interpretation
methods. First at the global level, with mimic learning and method-based feature importance, followed
by LIME and SHAP. Method-based feature importance is derived directly by the model, e.g., using
a metric such mean decrease in Gini impurity [59]. For the sake of brevity, in the derivation cohort
I provide a detailed output of all the methods, while opting for a summarized perspective in the
validation cohorts using the interpretability heatmap.

Mimic learning and method-based. Regarding both mimic learning and method-based inter-
pretability approaches, Figure 4.5 shows the respective feature importances. Blood urea nitrogen
(BUN) in the days prior to the surgical procedure featured turned out to be an important feature.
In fact, this is an important biomarker associated with kidney function, along with creatinine levels.
However, creatinine did not figure in the mimic learning approach, but only in the method-based ap-
proach. Notably, both methods also included Elixhauser score, an overall indicator of co-morbidity, as
an important feature. These interpretability approaches offer an overall perspective on the model, but
little information on the direction of that correlation, e.g., are low or high values of serum creatinine
associated with a positive outcome? This question is tackled by methods such as LIME and SHAP.

Local Surrogate. The LIME method expects a given prediction sample – or a patient – along with the
trained model an inputs. Therefore, an expert can inquire the model as to ‘why’ a given decision was
made by the algorithm. However, to obtain an understanding of the model as whole, one would have
to explain many instances. Since, this task might be too consuming depending on dataset size, LIME
provides a strategy called submodular pick that retrieves the instances that are the most representative
of the overall model’s behavior [52]. The results provided by LIME represent the coefficients of
the surrogate regression model applied locally. I report the top ten features that explain the onset
of AKI using submodular pick of six prediction samples in the test set, as displayed in Figure 4.6.
Some of features tend to be important for the model’s output across different prediction instances,
e.g., Elixhauser score, platelet count, serum creatinine, and BUN lab tests. Strikingly, blood-related
biomarkers, such as high hemoglobin, feature in the local explanations as protective factors.

Shapley Values. Finally, the SHAP summary plot conveys both a global perspective, as well as
local perspective using a game-theoretical approach [62]. To a certain extent, it merges the approaches
discussed previously. Indeed, we observe some of features mentioned in the other methods once again
highlighted by SHAP: BUN, serum creatinine and hematologic values. Indeed, the trend observed for
these blood-related values via LIME reappear in SHAP, i.e., high-values of hemoglobin, hematocrit
levels, seem to lead to lower likelihood of AKI.
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0.00 0.01 0.02 0.03
Regression Coefficients (BRR)
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Figure 4.5.: Global explanations provided by mimic learning and method-based feature importance using mean
Gini impurity for the 10 most important features. Note that some of the features are shared among both
methods, such as blood urea nitrogen. Abbreviation: PT=Prothrombin Time.
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Validation Cohorts

The heatmap in Figure 4.8 shows that blood urea and serum creatinine shortly before the procedure,
both clinically recognized biomarkers of kidney function, as well as Elixhauser score, a measure of
combined comorbidity, were considered important for all three methods in both cohorts. In contrast,
pre-existing chronic kidney disease featured prominently in the Mount Sinai cohort, while not the in
DHZB cohort.

It is important to notice that the magnitude of the importance of a given feature varies across
methods. For example, gender is assigned a relatively low feature importance across cohorts and
methods. However, it seemed comparatively more important for the local surrogate in the Mount
Sinai cohort. A similar pattern emerges with respect to peripheral vascular disease: important for the
global surrogate in the DHZB and for the local surrogate in the Mount Sinai cohort, but was assigned
a substantially lower importance otherwise.

Also noteworthy is the fact that markers associated with cardiac disease, such as valvular disease,
peripheral vascular disease, congestive heart failure and cardiac arrhythmia seemed to play an impor-
tant role for the models predictions across the cohorts. Exception here is cardiac arrhythmia: featured
importantly only on the Mount Sinai cohort.

4.5. Discussion

In the following, I analyze the results with respect to model development, validation and interpretation
and their significance in the context of previous work.

4.5.1. Model Development

Being able to more accurately predict AKI cases after surgery can empower doctors to adopt targeted
kidney-protective measures ahead of time.

In the extant literature, ensemble models have achieved excellent results for a wide variety of
prediction tasks [42]. The high discriminative performance achieved in this work by GBDT and RF
reflects the expectations of better performance with respect to linear models.

Furthermore, as exemplified by Table 4.1, the model developed in this work outperforms the Cleve-
land score by a considerable margin. However, the Cleveland score’s authors utilize a substantially
larger and more diverse cohort. The same observation applies to the STS score. The work of Tomašev
et al. (Google DeepMind) takes it a step further with a massive cohort of more than 700,000 pa-
tients [140]. One could reasonably argue that those scores potentially present higher generalizability,
but this is not always the case, as exemplified by applying the Cleveland score on a cohort of Chinese
patients [142].

Even though the model developed performed well across most metrics, it showed significant draw-
backs with regards to recall. While this issue can possibly be mitigated by adjusting classification
thresholds, it might have critical implications for clinical practice. Since a lower recall means that
patients who will develop AKI might incorrectly be deemed as not under risk, calibration must be
conducted, at the expense of possibly harming patients. This fact speaks for the necessity of a holistic
evaluation of discrimination metrics.

Finally, the models developed included laboratory values prior to the surgery. Arguably, these are
not always available for surgery patients, particularly when it comes to emergency surgeries. This fact
has led to a high degree of missing values in the cohorts. Even though imputation has been performed,
it is not possible to guarantee that the model has not been biased in some way or another.
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Figure 4.8.: Heatmap displaying normalized feature contributions from mimic learning, GBDT feature impor-
tance and LIME. Features are sorted according to the average contribution of all methods taken together.
Abbreviations: GS=Global Surrogate, LS=Local Surrogate, MB=Method-based feature importance.
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4.5.2. Model Validation

In the derivation cohort, while a high AUROC could be achieved, an imbalance with respect to
precision and recall could be observed, which was also present in the validation cohorts. In this work’s
context, higher precision than recall means that the model is particularly sure that patients it classifies
as under risk of AKI do in fact develop it, though it was very selective when doing so. As a result,
it means that the model will likely ‘miss out’ on patients under risk (false negatives). This tendency
of the model was further exacerbated in the validation cohorts as illustrated by the large difference
in terms of DOR. While precision and recall differed upon validation, they did so to a considerable
smaller extent when compared to DOR for both cohorts.

This difference in DOR can be explained by a much larger ratio of false negatives to true negatives
in the validation cohort (cf. Equation 2.8). For AKI management, the costs of misclassifying a high-risk
patient as not under risk are higher than enabling protective measures for patients who are not under
risk. Therefore, thorough model calibration would be necessary before clinical deployment with other
techniques beyond Platt’s method. The differences in performance upon validation, particularly in
the set-up without model update, can be traced back in part to a difference in the prevalence of the
outcome of interest, i.e., 9.83% (derivation), 38.4% (DHZB) and 4.51% (Mount Sinai).

Overall, the deterioration in the discriminative performance of the derivation model (MIMIC-III)
was more pronounced in the DHZB than the Mount Sinai cohort. This can be partially explained
by the fact that MIMIC-III is based on data from Beth Israel Deaconess Hospital, also an American
institution, with potentially similar standards of care with respect to Mount Sinai hospital. This
difference highlights the necessity of examining the geographical stability of prediction models [36].

Finally, clinical usefulness analysis suggests that the model as developed provides benefits only
within given threshold ranges: this fact must necessarily be taken into account in a future model
deployment, i.e., a blanket deployment might lead to deleterious effects in spite of satisfactory dis-
criminative performance. These results underscores the need for comprehensive model reporting,
including discrimination, calibration and clinical usefulness, particularly when it comes to machine
learning models, at the risk of potentially compromising patients’ health [36].

4.5.3. Model Interpretation

Using the interpretability approaches presented, I seek to shed light into the black-box models in order
to 1) help to uncover potentially new clinically relevant results, 2) identify potential model biases and
3) obtain information on how the models could be updated in the validation cohorts. In the following,
I provide the feature importance results for the derivation cohort, and both validation cohorts.

Potentially Clinically Relevant Insights

Model interpretability is critically relevant for medical practitioners to foster acceptance and increase
trust in decision support for clinical applications [53].

Upon examination of the instances chosen by the submodular pick by LIME, we can observe that
a high Elixhauser score tends to increase the risk of post-surgery AKI. Note that positive coefficients
are positively correlated with the outcome and vice-versa. This observation agrees with the medical
interpretation of this comordibity score: higher values are in general associated with poorer patient
outcomes in general [151]. With regards to blood/serum creatinine, it is an important marker of kidney
function, being present in the definition of AKI itself, with higher values indicating deterioration of
kidney function [146].

Furthermore, a striking result observed in the derivation cohort is the influence of blood-related
biomarkers, such as hemoglobin, which were captured in by the different methods. In particular, LIME
indicate these biomarkers as being protective, i.e., lowering the likelihood of AKI. The direction of this
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association was made more clear by SHAP: low values of hemoglobin and hematocrit increased the
likelihood of outcome (AKI), while high values seemed to have a protective effect. A known association
exists between anemia (low red cell count) and CKD, since the kidneys are responsible for producing
erythropoietin, the hormone that mediates red cell production. In fact, a study by Lebensburger et al.
hinted at a possible protective effect of higher hemoglobin for kidney disease in children with sickle
anemia [152]. This warrants further investigation, particularly because hemoglobin and hematocrit
levels are modifiable factors which can be regulated via adequate medication.

Uncovering Potential Model Biases

The use of interpretability approaches make it straight forward to inspect potential model biases.
For example, the fact that Elixhauser score features prominently across the cohorts might only be a
reflection of the fact that the patients under analysis are in a critical condition. This realization does
not necessarily add knowledge or increase the understanding of the underlying factors of the disease.
A similar argument can be made for biomarkers which are usual proxies for kidney function, such
as creatinine. Further, one can discern a relative preponderance of cardiovascular diseases across the
cohorts. Indeed, cardiovascular risk factors and valvular disease have been linked to acute renal failure
in the elderly [153]. However, this might be solely a reflection of the underlying cohort (heart surgery
patients), which necessarily is likely to contain patients presenting those comorbidities. Another issue
to consider is the role that the type of procedure itself plays in mediating AKI risk: it is arguable that
valvular disease only affects outcomes for valve surgery patients. This prompts the necessity of a
stratified analysis of the respective cohorts.

Updating Models for Better Validation Performance

Differences in model performance in the validation cohorts can be attributed to a number of factors.
One factor is concerned with differences in incidence rate of the outcome. Another factor refers to the
distribution of the model features: some of the model features might even be completely missing in
the validation cohort. Since extracting additional features is potentially a resource-intensive activity,
which could include for example performing laboratory tests, a feature should only be considered for
extraction if its presence would be likely to improve model performance.

In this work’s particular use case, one can ascertain that feature importance analysis suggests that
laboratory values leading up to the surgery, one, two or up to three days before were important markers
for AKI. This effect was particularly pronounced in the derivation cohort (MIMIC-III), therefore the
model relied to a significant extent on these longitudinal values. Indeed, examining the distribution of
these longitudinal laboratory values in the validation cohort (cf. Table A.1), one can observe that they
are more often missing in the DHZB cohort as opposed to both the MIMIC-III and Mount Sinai cohorts.
Case in point is BUN three days before surgery: missing for 85% of the DHZB patients (compare to
73.5% and 60.8%, for MIMIC-III and Mount Sinai, respectively). This actually reflects another issue:
discussion with the medical partner at DHZB revealed that in this German hospital surgical patients
are usually admitted only shortly before the procedure takes place. As such, laboratory values days
before surgery are not available as a rule. This observation suggests that in the DHZB cohort patients
were admitted to the hospital before any monitoring could take place. The different levels of feature
‘missingness’ possibly suggest a different patient case mix. This difference in patient case mix is also
reflected in the Elixhauser score. Upon closer inspection of the distribution of this variable, one can
observe that its mean value in the DHZB cohort is substantially lower than in the other cohorts (Beth
Israel and Mount Sinai). This is indicative of the fact that in these hospitals patients tend to treat
patients presenting a high spectrum of diseases (higher Elixhauser score), contrasting with the DHZB,
an institution focusing solely on heart patients.
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Building on these insights, possibilities to update the original model for better validation per-
formance could be: 1) e.g., exclusion of Elixhauser score in favor of its constituent comorbidities, 2)
limiting model features to lab values available upon or shortly before admission, which are more likely
to be available, or 3) though more difficult, increasing monitoring of patients at risk so that a longer
history of data points is available. It is important to notice that a mere analysis of the distribution
of different variables while informative, would have offered little towards understanding underlying
causes for performance differences from the perspective of the model itself. This strengthens the case
for the use of interpretability approaches in clinical predictive modeling.

4.6. Limitations

A number of limitations apply to the work described, particularly with respect to feature selection
bias, summarization of longitudinal data, robustness of the interpretability methods in general and
finally the lack of an impact analysis of the clinical model in practice.

Selection Bias

I conducted the initial variable selection via hand-crafting the features: after literature exploration
and expert consultation, a set of features were identified which guided model development. As such
the features selected only cover a fraction of those which are potentially available in an EHR. Indeed,
ML models thrive when provided with copious amounts of data. However, increasing the number of
features might lead to issues with overfitting, potentially limiting even more the reproducibility of the
results [154].

Summarizing Longitudinal Data

Another issue to be taken into account is the approach I followed to process the laboratory data
used: for each of the periods, the mean value of the feature was used, i.e., a feature summary. By
processing these longitudinal features in this way, relevant information is possibly lost, which could
be informative for the model. Better approaches exist to handle this problem, such as alternative
time-series representations, e.g., using Symbolic Aggregate approXimation (SAX) [155]. Also, deep
learning approaches using Recurrent Neural Networks (RNNs) or Long Short-Term Memory (LSTM)
networks could be employed that require little feature pre-processing [156].

Robustness of Interpretability Methods

The interpretability algorithms themselves are also not entirely without downsides and pitfalls: expla-
nations tend to lack robustness, i.e., different methods might provide different explanations for the
same model [157]. For one, while global surrogates such as mimic learning are flexible, the conclusions
drawn concern the model, not the data, since the surrogate model does not have access to the actual
data. As such, explanations tend to be only as good as the original model. Furthermore, since the
choice of surrogate impacts how well it can mimic the original model, i.e., its R2 values, the surrogate
itself will bring along a host of potential issues. Second, local surrogates such as LIME tend to ex-
hibit a considerable degree of instability for their explanations. This happens because of the random
neighborhood sampling inherent to this method. In other words, if the sampling process is repeated,
one might obtain different explanations for the same instance, calling into question its robustness. I
sought to mitigate this effect by applying submodular pick and averaging out the contributions across
many different explanations.

83



4. Case Study: Acute Kidney Injury

For these reasons, an overall feature rank could be developed which considers a range of different
interpretability methods, taking into account how often features are mentioned across methods and
with what importance [15]. In other words, if a feature shows up in multiple interpretability methods
as important, its contribution towards the outcome of interest is more stable. Therefore one could
surmise that the particular feature is either a) reflective of properties inherent to the use case or b)
inherent to the data (learned biases). If the feature is inherent to the use case, a desirable property, one
can hypothesize that using those particular features for updating a model in a validation study would
be beneficial, i.e., lead to simpler, easier-to-understand models. Ultimately, such hypotheses drawn
from such interpretability algorithms must be validated by experiment for claims to be considered
valid. In the next chapter of this thesis, I address this very issue: how can interpretability methods
provide a contribution towards updating clinical predictions models in validation studies.

Impact Study

Validation studies such as the one I conducted in this work are only the first line of validation. If a
model performs well in an external cohort, it is an indication that it can perform well in practice. For
a model to be deployed in the clinic, a comprehensive evaluation in the clinic should be conducted.
This could take two forms in the clinical setting. The first one is to compare risk assessments made by
the model with those made by the doctors themselves and compare the outcomes: the model does not
need to be perfect, only better than the doctors. This approach, however, only provides information on
the model quality, but not how its use could impact patient outcomes or the quality of care itself. The
second option is more resource-demanding: conducting a fully-fledged RCT, in which two cohorts of
patients are treated based on the prediction probabilities generated by the model, and another follows
the standard care pathway.

4.7. Conclusion

In this chapter, I presented the development, validation and interpretation of a CPM that makes use
of ML algorithms on EHR data to help predict the risk of AKI using parameters collected prior the
actual procedure on the heart. Prospectively, the use of such a predictive model can help physicians
to identify high-risk patients so that protective and/or preventive measures can be adopted early
in the treatment. Examples for such measures are readying renal replacement resources in advance
and avoiding nephrotoxic agents. A range of modeling algorithms was put to analysis. The best
model outperformed established clinical scores for post-surgical AKI onset by a significant margin
upon derivation (0.90 vs. 0.83 AUROC for the best-performing algorithm). In the current literature,
validation of CPM is performed only rarely. In this work, I analyzed in-depth how the model
performed when applied in two external cohorts, German Heart Center and Mount Sinai. The
excellent results achieved could not be reproduced to the same extent in the validation cohorts, with
performance deterioration most pronounced in the German hospital cohort (0.90 vs. 0.76 AUROC)
even after re-training the model.

While a performance difference was expected to some degree, the issue is compounded by the use
of ‘black-box’ algorithms. As the first work in the literature for clinical predictive models, I applied
local and global interpretability methods side-by-side in order to illuminate possible reasons that
could account for performance differences, including potential model biases inherent to the derivation
cohort (MIMIC-III). Indeed, the methods employed highlighted particular characteristics of the CPM
developed, which, as it turned out, relied considerably upon longitudinal lab values, and on an
aggregated marker, the Elixhauser score. Even though the insights obtained can potentially inform
model update for external validation, hypotheses drawn from these methods must be validated by
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experiment, i.e., via iteratively refining the model. Potentially, this might lead to more generalizable
models that are easier to understand for practitioners. Open questions remain, however, regarding the
robustness of interpretability methods, an issue that warrants further investigation. Finally, a major
weakness is the lack of an analysis on the impact of the model on patient outcomes, which requires
setting up a RCT.
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Next to my own contributions in developing, validating and interpreting the models, designing and
conducting the experiments and analyzing the results, the following credits are due with respect to
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5. Explanation-Driven Recursive Feature
Elimination

"We are not going in circles, we are going upwards. The path is a spiral; we have
already climbed many steps."

—Hermann Hesse, Siddhartha (1922)

How to select the best features for modeling? In this chapter, I demonstrate how ap-
plying feature selection approaches can lead to simpler, more interpretable models. Different

works exist evaluating such methods in the omics domain, but remains scarcely explored in predictive
modeling, particularly in external validation studies.

5.1. Introduction

In Chapter 4, we observed that model performance upon validation deteriorated with respect the
validation cohorts. When validation performance is worse than that of model derivation, a procedure
called ’model updating’ can be applied. In this context, it consists in adapting model parameters or
the model itself to the characteristics of the external validation cohort [158]. This is a straight-forward
process when it comes to models such as logistic regression, in which it suffices to update regression
weights or adjust decision thresholds. It is a less trivial task with respect to “black box" approaches
such as GBDT or RF, since “the reasoning behind the function is not understandable by humans and
the outcome returned does not provide any clue for its choice" [159]. This issue is compounded by
the fact that ML often rely on a large number of predictors, allowing for non-linear relationships to be
learned, but at a greater risk of overfitting to the original dataset.

Therefore, if a researcher wishes to update the original predictive model in such as way as to increase
its generalizability on a validation cohort, she should investigate what model features are most likely
to reflect intrinsic characteristics of the phenomenon under analysis. As such, a fundamental question
presents itself: what features should be included in the model that will provide acceptable performance
for both the derivation and the validation cohort? Furthermore, often, not all of the features used
on derivation can be found in validation. Take, for the sake of example, a predictive model that
partially relies on hard-to-acquire serum biomarkers: since this involves obtaining a blood sample
and laboratory analysis, this feature should only be required in a validation scenario if the model’s
performance depends to a large extent on its availability. Therefore, a similar question arises: what
features not present in the validation cohort should be extracted, which will lead to most significant
gains in performance? Identifying the right model features to keep can lead to simpler models, with
shorter training times, and enhanced generalization.

In fact, a host of feature selection approaches exist, which are aimed at selecting the most informative
features in a dataset. In the bioformatics domain, there has been extensive research evaluating such
methods. However, comparatively fewer studies have been conducted specifically in the clinical
predictive modeling domain with a particular focus on performance on an external validation cohort.
Furthermore, these methods rely to a large extent on the training data itself, therefore with a high
potential for overfitting. For example, a feature selection method applied on one cohort is likely to
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Figure 5.1.: Graphical abstract of the update procedure using Business Process Modeling Notation. The composite
feature rank is obtained by averaging the metrics obtained within the cross-validation loop.

be of little value in a validation cohort, among others, because the feature distributions might be
fundamentally different. We examined previously how interpretability methods can help shed light
on a model’s intrinsic behavior, providing key insights into the model’s decisions. I hypothesize
that combining the feature rankings provided by each of the interpretability methods into a single,
composite feature ranking, can be used to develop models that perform better than traditional feature
selection methods in an external validation cohort.

To test this hypothesis, I apply four interpretability methods, global and local surrogates, along
with method-based feature importance and Shapley values on the use case AKI discussed previously
to derive a composite feature rank, which will be compared against state-of-the-art feature selection
methods. Figure 5.1 outlines the overall procedure followed in this work for obtaining the composite
score. This approach will be evaluated on the validation cohort (Mount Sinai) and on 25 other synthetic
cohorts based on it, which were generated using Generative Adversarial Networks (GANs).

The rest of this chapter is structured as follows. Section 5.2 relates a brief overview of the feature
selection methods I will employ and the model update procedure. Section 5.3 expounds on the
Explanation-Driven Recursive Feature Elimination (ED-RFE) procedure itself and the experiments
designed to evaluate it, while Section 5.4 presents results obtained. Finally, Section 5.5 outlines their
the significance.

5.2. Related Work

This section provides a brief overview of related work with respect to model update, feature selection
methods and the recursive feature elimination procedure.

5.2.1. Model Update

Su et al. outlines three possible courses of action: 1) coefficient updating, 2) combining multiple
previous CPMs in a meta-model and 3) dynamic updating of models [160]. The first strategy is widely
employed when it comes to models based on LR and therefore not necessarily applicable to ML-based
models. The second approach requires the availability of those multiple CPMs based on a range of
different cohorts. Since obtaining validation cohorts is a challenging task, combining different models
might be less practical. Finally, the last approach takes into account how patient populations change
overtime. In this thesis, I consider an updated model as one that was trained from scratch on the
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validation setting, as opposed to incremental learning or transfer learning [161]. Therefore, the unit of
knowledge that is transfered across cohorts is the respective feature rank obtained from the derivation
cohort.

5.2.2. Feature Selection Methods

Feature selection methods help practitioners to identify redundant or non-essential features in predic-
tive models. This is of particularly relevance for ML models, which tend to learn specific characteristic
of the data at hand. Applying such methods can lead to simpler models, and therefore better in-
terpretability and shorter training times, and prospectively better generalization, owing to reduced
overfitting [162]. Roughly, current techniques can be categorized as filter, embedded or wrapper
methods, which apply different approaches to selecting the best features.

Filter Methods. This approach operates by establishing a proxy of feature importance for each
feature, or relevance index, independently of the classifier used [163]. These methods are typically
computationally inexpensive and because they are classifier-independent, they tend to expose rela-
tionships between features, since they do not rely on assumptions made by the underlying prediction
model. Examples of such methods are correlation-based approaches, such as t-test, F-test and mutual
information [164] and ReliefF algorithms [165].

Embedded Methods. Another broad category of feature selection methods are the one in which
the selection procure is part of the model building itself, i.e., embedded into it. In the Least Absolute
Shrinkage and Selection Operator (LASSO) technique, this is achieved by introducing a regularization
coefficient, which shrinks non-relevant regression coefficients of a model towards zero with a L1

penalty [162]. Another prominent example of this category of approach is the Elastic Net approach,
which linearly combines the L1 penalty of LASSO with the L2 penalty of ridge regression [166].

Wrapper Methods. Finally, this category of methods rely on a given predictive model to evaluate
a different candidate feature subsets, developed on a training set and evaluated on a held-out test
set [167]. Each feature subset is evaluated on the basis of a given metric, for example, AUROC, thus
establishing that subset’s score. Because a new model needs to be trained for each subset, these
methods tend be computationally costly. On the upside, given their reliance on a specific predictive
model, they tend to provide the best results in comparison to the previous two approaches [162].
A widely employed method in the biomedical domain, Boruta, is a wrapper method built with
random forest, which iteratively compare the importances of actual features against that of synthetic
features [168].

The Recursive Feature Elimination (RFE) technique can be interpreted as an instance of a wrapper
method, in which different feature subsets are continuously evaluated, aiming towards progressive
model enhancement. Technically, RFE is a backward selection of predictors, i.e., it starts out with the
full feature set, features are removed until an optimal number of features can be achieved according to
a scoring function. In essence, it initially builds a model on the full set of predictors and ranks those
predictors using a metric of feature importance. Using this ordered sequence of predictors, at each
step of the procedure, k variables are removed, and the model is re-fit and re-evaluated on the retained
features. Finally, the top features are used to fit the final model [169]. Given the method’s procedure,
the choice of feature importance metric has an important impact the performance of the approach.
The original paper by Guyon et al. employed Support Vector Machines (SVM) feature importances,
but other alternatives such as mean decrease in Gini impurity from RF could be used [169]. Being a
wrapper method, while this procedure is more computationally intensive, it tends to provide better
results in comparison to filter or embedded methods.
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5.2.3. Knowledge Gaps

Knowledge gaps can be identified with respect to two main aspects. The first refers to the relative
lack of comparisons of feature selection methods particularly in the clinical modeling domain. In the
bioinformatics domain, particularly when it comes to gene expression, a number of studies compare
the performance of myriad of feature selection methods seeking to ascertain the ‘best’ method in
high-dimensional datasets [17, 170, 163, 171]. Gene expression datasets, by their very nature, tend to
provide similar sets of features, making such studies possible. However, little has been examined in
the domain of clinical prediction models, with two works by Sanchez-Pinto et al. [17] and Bagherzadeh
et al. [172]. Given the inherently empirical nature of such studies, it is challenging to establish an
undisputed ‘winner’. Therefore, more empirical examinations in the clinical modeling domain are
needed.

Second, the few studies which exist do not deal with the issues of evaluating the results obtained in
external validation cohorts. Critically, no work so far in the clinical modeling domain has particularly
analyzed the issue of generalizability of the results obtained by the different feature selection algorithms,
for example, in the context of a validation study. Results obtained in the literature suggest that feature
selection in clinical predictive models can indeed improve model performance with higher simplicity.
However, it is not known whether these promising results can be transferred to external validation
cohorts. In other words, do the feature selected upon derivation also perform well in an external
validation cohort? If the model has learned underlying feature relationships this should be verified in
practice. This issue merits further investigation because one of the quintessential promises of feature
selection is to reduce model bias.

Finally, we saw in Chapter 4 how the use of interpretability methods can aid in understanding the
underpinnings of the models themselves. To a certain extent, these interpretability methods could
also be used as feature selection methods, since they provide a feature ranking. We also observed how
the outputs of those methods differ from one another (cf. Figure 4.8). While this lack of robustness
can be a detrimental factor, if one combines those outputs into a single composite ranking, this can
potentially lead to better generalization in an external validation cohort, because one could then
achieve a consensus on the importance of different features. In effect, this consensus-based approach
has been shown to perform better than individual methods in the biomedical domain [17]. Therefore,
I adapted the RFE procedure using a consensus-based or composite feature ranking, i.e., ED-RFE,
building on the individual feature rankings of different explanation methods.

5.3. Methods

This section outlines in the detail the experimental set-up pursued in this chapter, along with a brief
description of the data generation procedure. Finally, I explain how the ED-RFE procedure was carried
out.

5.3.1. Experimental Set-up

The experimental set-up is divided in three experiments, which will be evaluated by means of AUROC
as evaluation metric on the AKI use case. Overall, the experiments seek to ascertain how adequate are
the different methods to the task at hand.

Experiments. The first analyzes the performance of the ED-RFE approach on the derivation cohort
(MIMIC-III) and validation cohort (Mount Sinai). This experiment seeks to answer the question:
how generally adequate is the ED-RFE procedure, in other words, is it possible to obtain simpler
models using this procedure as is? In the second experiment, I compare the ED-RFE approach to
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the other feature selection methods, i.e., I use RFE in which the feature rank is determined by the
feature selection algorithms themselves. This experiment answers the question: how does the ED-RFE
approach compare to other methods in terms of discriminative performance? In the final experiment,
using 25 synthetic cohorts based on the validation data, I apply the RFE procedure once again, aiming
to obtain a generalization for the results obtained in Experiment 2. As such, this experiment helps to
answer: to what extent are the results obtained statistically valid?

Evaluation. For the evaluation, I utilize the use case AKI, as discussed in Chapter 4, using the AU-
ROC as primary evaluation metric. I correct for bias by applying 10-fold cross-validation throughout
the experiments. Finally, note that throughout the rest of this work, I focused on the two best-
performing algorithms according to the evaluation in Chapter 4, i.e., Gradient Boosting Decision Trees
(GBDT) and in particular Random Forest (RF).

5.3.2. Data Generation

A thorough evaluation of the methods requires the availability of appropriate datasets. Since obtaining
validation datasets for clinical predictive modeling can be a daunting task, I resorted to synthetic data
generation. Many approaches exist for this task, for example using Bayesian networks [173]. Recently,
the use of GAN-based approaches has been demonstrated to outperform conventional statistical
methods in capturing inter-column correlation, scalability and data privacy protection [174, 175]. I
utilized the method Tabular GAN (TGAN) for this task [175].

The basic GAN architecture relies on a generator which tries to ‘fool’ a discriminator with synthetic
examples. In TGAN, the generator is a Long-Short-Term Memory (LSTM) network and the discrimina-
tor is modeled by a Multilayer Perceptron (MLP). This method has the additional benefit of modeling
each data column separately, including both continuous and categorical features.

5.3.3. Statistical Evaluation

Following the recommendations from the literature, in addition to the individual metrics for each
of the 25 datasets, I also provide a statistical evaluation of the results achieved across the datasets
for each feature selection method [73]. Following Demšar’s recommendations [73], first, I applied
the Friedman test to ascertain whether statistically significant differences exist between the different
selection methods for α < 0.05. In the second step of the evaluation, I conducted a pair-wise Nemenyi
post-hoc test to ascertain differences between the methods themselves.

5.3.4. Feature Selection Methods

For the performance comparison, I selected methods which are representative for each of the categories
discussed in Section 5.2. As an example for filter methods, I utilized F-Test, Mutual Information and
ReliefF. Since I am using RF as the underlying model, for the wrapper methods, I chose mean decrease
in Gini impurity as feature importance and also Boruta using RF. Finally, as an instance of embedded
methods, I selected Elastic Net, since it combines L1 and L2 regularization. Table 5.1 summarizes the
methods used in the evaluation.

These are implemented via the job Select in MORPHER Toolkit. Using this resource, the task of
imputing a dataset with KNN, performing feature selection with Boruta, training a default RF and
evaluating on a held-out test set can be implemented as demonstrated in Listing 5.1.
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Listing 5.1: Exemplary depiction of how to train a RF model with feature selection using MORPHER Toolkit jobs.
Note that feature selection should take place after spliting, otherwise leakage my occur.

1 import morpher

2 from morpher.config import algorithms , imputers, selectors

3 from morpher.jobs import *
4 from morpher.metrics import *
5

6 ’’’ define the input file and target variable ’’’

7 filename="cohort.csv"

8 target = "target"

9

10 ’’’ First we load, impute and split the dataset in train and test ’’’

11 data = Load().execute(filename=filename)

12

13 ’’’ data and target variables have been defined previously ’’’

14 data = Impute().execute(data, imputation_method=imputers.KNN)

15 train, test = Split().execute(data, test_size=0.2)

16

17 ’’’ select relevant features with Boruta ’’’

18 train, selected_features = Select().execute(

19 data=train,

20 selection_method=selectors.BORUTA

21 )

22

23 ’’’ then we train the given algorithms on the training set ’’’

24 models = Train().execute(

25 data=train,

26 target=target,

27 algorithms=[algorithms.RF]

28 )

29

30 ’’’ and evaluate them on the test set, slice by selected features ’’’

31 results = Evaluate().execute(

32 test[selected_features],

33 target=target,

34 models=models

35 )
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Table 5.1.: Feature selection methods employed and the corresponding implementations used. All these methods
are available via the MORPHER Toolkit API.

Category Method Implementation

Filter
F-Test [164] scikit-learn [45]
Mutual Information [164] scikit-learn [45]
ReliefF [176] scikit-rebate [177]

Wrapper
Gini Impurity [59] scikit-learn [45]
Boruta Selector [168] boruta_py [178]

Embedded Elastic Net [134] scikit-learn [45]

5.3.5. Explanation-Driven Recursive Feature Elimination

Drawing on a joint feature ranking taking into account all interpretability methods, I apply recursive
feature elimination on the validation cohort using knowledge gleaned from the derivation cohort. Using
a measure of feature importance, it is possible to develop a feature rank for a given classifier, e.g., the
ordered weights of a logistic regression classifier. By recursively removing features of the model based
on this rank, it becomes possible to produce simpler models with similar performance, effectively an
instance of feature selection [179]. This approach is called RFE and traditionally relies on a single
measure of feature importance, such as the mean decrease in Gini impurity outlined previously. I
extended this approach to utilize a composite feature rank, which relies on different interpretability
methods taken together.

Composite Feature Rank

Since the use of the different explanation methods provides a convenient feature ranking, we can
use a combination of those multiple ranks to obtain a more balanced view on feature importance
across all methods. As such, this approach was extended as follows. First, I computed the feature
rankings for each explanation method for a given model trained on the derivation dataset. Second, I
normalized the calculated feature contributions to lie in the range of 0.1 - 1.0 (to avoid attributing zero
to lowest-ranked features). Third, I obtained the specific feature’s normalized average contribution
across all methods, i.e., the feature’s mean. Finally, I calculated a weighted average of the mean feature
importances, using as weights how often the feature was mentioned across the different methods,
i.e., its support. This was done in order to avoid having a feature dominating the rank which was
mentioned only once. This approach is detailed algorithmically in Algorithm 3.

In this work, I considered the feature’s mean importance and the support to be equally relevant.
However, one could optionally, e.g., confer more importance to how often a feature was mentioned by
the methods as opposed to mean importance.

Recursive Feature Elimination

The composite feature rank thus created can be construed as ‘distilled knowledge’ about underlying
factors mediating the target variable in the derivation cohort. I sought to assess to what extent this
knowledge is reflected back upon validation. If similar features turn out to be relevant in both cohorts,
one could develop models that potentially perform well on both cohorts that rely on fewer features.
Once the composite rank is calculated on the derivation cohort, I recursively train a model with
different feature subsets with cross-validation to control for bias, as outlined in Algorithm 4.
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Algorithm 3: Obtaining composite feature rank
Input: Trained Model, Features, Test Data, Explanation Methods
Result: Composite Feature Rank
// R is vector of vectors, dimension | f eatures| × |methods|;
Initialize rank matrix R across all f eatures and methods;
Initialize rank summary vector S across all f eatures;
foreach method in {explanation methods} do

//use test data if method requires
Apply method on model;
Obtain feature importance rank vector rmethod;
Normalize rmethod to [0.1, .., 1] (min-max);
foreach f eature in rmethod do

Assign importance of f eature to R f eature,method;
end

end
foreach feature in vector R do

Compute mean of f eature importance mean f eature in R f eature;
Compute support of f eature citations support f eature in R f eature;
// i.e., length of vector R f eature (how often f eature was cited);
Normalize support f eature to [0.1, .., 1] (min-max);
S f eature = Average of mean f eature and support f eature;
[Optional] use weight factor for mean and support;

end
Reverse-sort S;
Return Reverse-Sorted Composite Feature Rank S;

Algorithm 4: Model update with feature elimination
Input: Target Cohort, Composite Feature Rank S
Result: Cross-Validated Performance Metrics
Initialize K cross-validated train, test f olds ∈ target cohort ;
Initialize max features, i.e., total maximum number of features;
foreach k fold in K folds do

Initialize feature subset s with all features ∈ S;
while |s| >= max features do

Train model with feature subset s and evaluate it on test;
Store model metrics for fold k and feature subset s;
Remove lowest-ranked feature from s (reverse-sorted);

end
end
for Each k fold and feature subset s do

Compute cross-validated metrics (mean and standard deviation);
end
Return Cross-validated metrics for each feature subset on S;
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5.4. Results

In this section, I present the experimental results in the following order. First, I utilize the composite
feature rank to update the derivation cohort and validation cohort, i.e., the ED-RFE approach. Third, I
compare the ED-RFE approach against the other feature selection methods on the derivation cohort
(Mount Sinai). Finally, I apply the different methods, including ED-RFE, on the 25 synthetic cohorts
and evaluate the statistical significance of the results.

5.4.1. Experiment 1: Applying the Composite Feature Rank

How adequate is the ED-RFE procedure? Figure 5.2 displays the results of this process for both
RF and GBDT. First, the overall AUROC was higher for RF. Second, GBDT presents a substantially
wider standard deviation in 10-fold cross-validation than RF, which potentially casts doubt on the
robustness of the results. Third, as more features are added to the model, performance ceases to
improve substantially, basically flattening out. For RF, the top 40 features seem to provide for both
cohorts the best results. In the case of GBDT, this is less obvious because of the substantial degree of
variance observed, but performance seems to be best at around 35 features.

Focusing on the RF model, Figure 5.3 shows the top 15 features which were selected by the procedure
along with the scores obtained via 10-fold cross-validation from the derivation cohort (MIMIC-III). The
results obtained by the top features Elixhauser score, blood urea nitrogen, fluid electrolyte imbalance
and creatinine show a considerably higher range of values across the cross validation folds as compared
to the other features. However, the values tended to be more uniformly distributed, as evidenced by
the the probability density of the scores displayed in the violin plot. Note that the features included
in the composite rank reflect to a certain extent the features analyzed in Chapter 4.

5.4.2. Experiment 2: Comparing Feature Selection Methods

How do the different selection methods compare to one another? In a first step, taking the RF model, I
applied the RFE procedure, exchanging the feature rank computation (cf. Algorithm 4) for the feature
importance rank obtained by applying the respective feature selection method. Then, using each of
the respective feature ranks, I recursively applied it to the derivation cohort (MIMIC-III). The results
are displayed on Figure 5.4. On the one hand, the RFE procedure using the composite feature rank
from the explanations (ED-RFE) performed only marginally better than the feature rank provided by
mean decrease in Gini impurity, i.e., feature importance from RF. With respect to F-Test, a somewhat
more pronounced advantage could be ascertained, albeit only for the first 20 features. On the other, a
marked benefit could be ascertained with respect to mutual information, ReliefF, Boruta and Elastic
Net. Note that the last two methods do not provide a feature rank itself, e.g., Boruta only categorizes
features as relevant or not, without a ranking among the relevant features. Similarly, with Elastic Net,
only the non-zero coefficients are included in the method’s feature rank. This is the reason why the
not all feature subsets can be seen in Figure 5.4.

Does the knowledge obtained from the derivation cohort transfers to the validation cohort? To
answer this, in a second step, I sought to assess the extent to the which the different feature ranks
obtained in the derivation cohort perform in the validation cohort. For this evaluation, I decided to set the
maximum number of feature subsets at 20, since this seemed to the number where differences between
the methods was most apparent. The results obtained are depicted in Figure 5.5. Here again, the
general trend observed in the derivation cohort is to a certain extent confirmed on the validation cohort.
A slight advantage of the ED-RFE over Gini impurity, F-Test and mutual information (∆∼0.01 against
Gini impurity). However, this advantage disappears as more features are added. Furthermore, the
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Figure 5.2.: Recursive feature elimination using the composite feature rank obtained from the derivation cohort.
Note that iterations using RF showed lower standard deviation as compared to GBDT.

advantage of the ED-RFE is most pronounced for ReliefF, Boruta and Elastic Net, with a performance
difference of ∼0.2 or 34% against Boruta @ 20 features.

Overall, the results obtained suggest that ED-RFE performs better than the methods evaluated with
respect to AUROC. Only to a small extent against Gini impurity, F-Test and mutual information, but
to a somewhat larger degree in comparison to ReliefF, Boruta and Elastic Net.

5.4.3. Experiment 3: Testing Statistical Significance

To what extent are these results statistically valid? To answer this question, I generated 25 synthetic
cohorts using GANs, which allows us to try to generalize the results obtained. Figure 5.6 shows the
metrics obtained in the different cohorts for RF @5, 10, and 15 features along the different methods.
As such, each data point in the plot is the AUROC of training the RF on the synthetic validation cohort
using the respective feature rank of the derivation cohort.

Using Friedmann’s test, statistically valid differences between the groups could only be observed
when utilizing the top 5 features, but not for the other combinations tested (α < 0.05). Indeed, after
carrying out pairwise Nemenyi significance test, one can ascertain that differences in performance by
F-Test in comparison to all but the mutual information method are significant (α < 0.05). Therefore,
here, a different picture emerges as compared to the previous experiment: the slight advantage of the
ED-RFE method over the others gives way to a better overall performance by the F-Test method (as
measured by the distribution’s median), namely, 0.66 vs. 0.71. Besides, ED-RFE showed no statistically
significant differences with respect to all but F-Test and Boruta, performing better than the latter, but
worse than the former (α < 0.05). The features selected by the methods and their respective rank are
displayed in Figure 5.8.
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Gini Impurity (GI)
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Figure 5.7.: Pairwise significance test of the different methods using Nemenyi test for models with the top five
features. This significance plots makes it easy to visualize the significance of differences across the different
methods.

5.5. Discussion

The following discussion will focus on the aspects concerned with the recursive feature elimination
procedure outline above as well as pinpoint limitations inherent to the ED-RFE procedure and this
evaluation.

5.5.1. Evaluation of the Feature Selection Methods

As demonstrated by the experiments, the choice of feature selection method has a substantial effect
on model performance, both for the derivation and validation cohorts. Strikingly, the results obtained
in the experiments performed, particularly Experiment 3, seem to suggest that the filter method
F-Test performs better than more complex wrapper methods such as mean decrease in Gini impurity
and our proposed method ED-RFE. Even though this result still needs further empirical evidence,
since statistically significant differences could only be ascertained for the top five features, it runs
counter to the usual notion that wrapper methods tend to perform better than filter methods. Indeed,
previous works have indicated that simple methods such as Student’s t-test provide the best predictive
performance with respect to molecular signatures [170]. A similar observation has been made by Hua
et al. on high-dimensional biological datasets, in which study classifier-independent filter methods
such as the t-test performed better than ReliefF [171]. Yet another study by Abusamra et al. dealing
with gene expression data reported similar results [17]. This trend had not been demonstrated in a
validation study focused on clinical predictive modeling.

5.5.2. Explanation-Driven Recursive Feature Elimination

In this work, I departed from the assumption that using knowledge gained upon derivation via
interpretability methods could be useful in updating models in a validation study, giving rise to
simpler, more robust models, i.e., possessing fewer features. The aim of interpretability methods
is illuminating a model’s inner workings. Therefore, one would expect the model to reflect the
underlying properties of the prediction problem. Since there is an inherent lack of robustness across
the methods, combining the different methods could lead to a more comprehensive perspective on
feature importance than any single methods [15].
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Figure 5.8.: Feature ranks of the top 5 features selected by each method. Note that Elastic Net and Boruta have
been purposefully excluded from this graph, because they do not allow a direct feature rank. Abbreviations:
CR=Composite Rank, GI=Gini Impurity, FT=F-Test, MI=Mutual Information and RF=ReliefF.

Indeed, as the results suggest, using the composite feature rank together with recursive feature
elimination did lead to simpler models, i.e., from approx. 100 to overall 20 most predictive features
performing similarly. It presented moderate advantages over the other methods tried, i.e., better
AUROC for the same number of features, in the validation cohort (Mount Sinai). However, it is
unclear whether the ED-RFE method should be preferred over a simpler feature selection model. First,
the interpretability methods require substantially more computational power than simple statistical
tests, because they often rely on repeated sampling of the underlying data, such as the local surrogate
LIME. Another case in point is the computation of Shapley values, e.g., requires setting up multiple
candidate predictor sets, with and without the given feature, a resource-intensive task. This issue
is further compounded if cross validation procedures are used. Second, exactly because of the
inherent data sampling in interpretability methods and the accompanying lack of robustness, the
results obtained are subject to significant degree of variation, depending on the underlying model
(cf. Figure 5.2). One possibility to mitigate this effect is to quantify and account for the robustness
of the interpretability methods into the update procedure [157]. Despite the ED-RFE approach not
performing substantially better than the filter method F-Test or the wrapper method based on Gini
impurity in the experiments performed, it does not perform substantially worse than those methods
either. Rather, it provides further insight into overall feature importance, potentially helping modelers
to identify biases and develop better predictive models.

Limitations

A number of limitations apply to this work. First, I analyzed the performance of the candidate models
using the different feature subsets only in terms of discrimination, a more thorough analysis should
include the other dimensions of analysis mentioned, i.e., calibration and clinical usefulness discussed
previously in Chapter 4. Such an analysis might reveal that while no benefits could be ascertained for
the ED-RFE procedure for AUROC, the benefits might lie in other model metrics. Second, in a similar
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vein, I did not consider in the evaluation other optimality criteria, which could help to establish a
trade-off between accuracy and complexity, such as Bayes or Akaike information criterion (AIC), which
penalizes model complexity. Third, I did not explore the effects of including or excluding correlated
features as part of the analysis pipeline. Particularly in the case of random forests, previous studies
reported that the effects of correlated predictors on the performance of feature selection methods
are not unequivocally positive or negative [180]. Fourth, the statistical analysis was carried out on
synthetic validation cohorts in a single use case (AKI), therefore the results presented are still subject
to further evaluation.

Finally, our model update procedure relied on re-training the models from scratch. I tried to retain
the knowledge from the derivation cohort by means of the feature ranks. However, given that the
models need to be re-trained might compromise the final model metrics. While out of the scope of this
evaluation, there are approaches which seek to keep the knowledge gained upon derivation for future
cohorts. Most prominent among those is the field of transfer learning with neural networks, which
relies on using knowledge from a previous task to learn a new, closely-related task [181]. In practice,
this is achieved by re-training selected layers of the neural network. Another related approach is
incremental on-line learning, typically applied in the context of learning from streaming data [182].
On-line Random Forest (ORF) is an example of an approach where trees and grown and discarded
as new data is made available [183], which remains to be explored in the field of clinical predictive
modeling.

5.6. Conclusion

Applying predictive models on external validation cohorts often leads to decrease in performance.
Therefore, the original models need to be updated, so as to produce better results upon external
validation. Since data extraction from EHR can produce datasets with a substantial amount of features,
modelers are left with the task of selecting what features to keep and what features to discard. The
problem is compounded in a validation setting: depending on the case, extracting the needed features
from the EHR might be associated with substantial effort. In this context, feature selection approaches
are often employed. However, since these methods rely on statistical properties of the training or
derivation dataset, it is unclear to what extent those properties are transferable to external validation
cohorts in clinical predictive modeling.

In this chapter, I presented an extensive evaluation of selected feature selection methods applied to
a an external validation cohort. The evaluation also included our method termed Explanation-Driven
Recursive Feature Elimination (ED-RFE), an attempt at distilling knowledge from the derivation cohort
using interpretability methods. Since I do not make use of deep learning in this work, the goal was
to attempt to trickle down the knowledge gleaned via interpretability methods from the derivation
cohort onto the validation cohort, i.e., an assisted model update. For this purpose, I built a series
of candidate update models for the validation cohort using the composite feature ranking from the
derivation cohort. This was achieved by iteratively removing the least important features from the
feature ranking and computing model performance for each feature subset. In essence, this approach
utilizes a composite feature rank instead of solely using feature importance, e.g., mean decrease in
Gini impurity, unlike the usual case in recursive feature elimination.

Remarkably, the results obtained in the different experiments suggest that filter methods such as
F-Test perform at least as well as – or better than – more complex feature selection methods, including
our Explanation-Driven Recursive Feature Elimination (ED-RFE), in this specific context of external
model validation. The results agree with observations made in the extant literature pointing towards
simple statistical testing as opposed to complex methods. Still, even though the ED-RFE procedure is
computationally more demanding than simple statistical testing, it can highlight features that are not
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captured by the other methods, further enhancing model understanding and informing model update.
Therefore, I argue that the use of interpretability methods should become a routine aspect of clinical
predictive modeling, including when performing feature selection for validation studies.

Future Work

This work was based on a single learning task (AKI prediction). A more thorough evaluation is
needed which includes other tasks, in order to assess generalizability and statistical validity of the
results. Furthermore, our evaluation was restricted to one single performance metric, and other
metrics should be also be considered. Besides, it is also promising to assess how incremental learning
or transfer learning techniques for model update compare against retraining the models from scratch
in validation scenarios. Finally, I have not assessed every feature individually: introducing further
evaluation dimensions such as ease of retrieval, objectivity or modifiability, i.e., the extent to which
it is possible to change the feature to influence outcome, could provide a the foundation for better
predictive models.

103



6. Conclusion

"Works of natural philosophy invariably include thesis and antithesis, the strict
pro and con of a theory. A book which does not include its opposite, or
‘counter-book’, is considered incomplete."

—Jorge Luis Borges, Tlön, Uqbar, Orbis Tertius. In: Ficciones (1940)

What have we learned? In this final chapter, I revisit the research questions posed in the
beginning, and analyze critically the contributions derived, while also outlining limitations and

directions for future research.

6.1. Revisiting Research Questions

Have the research questions been answered? To recap, the questions posed in Chapter 1 refer to
the standardization of clinical predictive modeling, the potential use of interpretability methods to
uncover biases and their application for model update in validation studies.

To what extent can the development and validation of clinical models be standardized with
software support across institutional barriers?

Standardization in any field almost necessarily comes at the expense of flexibility. As we have
seen, the sheer number of modeling decisions that must be made by practitioners adds substantial
complexity to the process: from the choice of imputation method all the way to how discrimination
will be evaluated, these decisions impact model performance and ultimately influence whether those
models will be deployed in practice. As such, any tool that aims to ‘automate’ this complex process will
be met with challenges. Indeed, as the number of tools available grows, it becomes hard to ascertain
what methods have been used, what parameters optimized and how the models were evaluated.
How can we then guarantee reproducibility? With MORPHER, I was able to map and implement a
substantial subset of those parameters, spanning the different process modeling steps (cf. Figure 2.1)
via the Toolkit and user interface (MORPHER Web).

Furthermore, in the case study chapter (cf. Chapter 4), I focused exclusively on AKI, but the
approach can be easily extended to any other disease or medical use case which can be modeled
as a binary classification task and for which adequate data is available. Therefore, using either the
Toolkit or Web frontend I developed, modelers already have a myriad of modeling options available,
particularly with respect to model evaluation. As such, the modeling work can be shifted towards
extracting the necessary data and identifying biases within these data by collaborating with medical
experts. Besides, an added benefit of standardization is the possibility to reduce complexity and make
it possible for non-technical people to learn the most important concepts quickly, so that they can
enter a constructive dialog with data scientists. Indeed, the interviews revealed that there is a lack of
knowledge on predictive modeling by medical researchers. The same point could be argued in reverse:
there is lack of clinical knowledge by data scientists. As such, once again, collaboration is essential
and MORPHER represents a first step towards this direction.
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To what extent can the use of interpretability methods on black-box prediction models help
illuminate model biases?

Chapter 4 provided an extensive treatment of the topic of predictive modeling in a concrete clinical
task – onset of AKI following a heart surgery. Unlike what usually happens in the literature, I
validated the model developed in two external cohorts, German Heart Center and Mount Sinai. Model
validation revealed that promising results obtained in derivation cannot always be transferred to
external cohorts. In this work’s specific case this was most evident in the German cohort as opposed
to the American cohort. These sobering results underscore the need for validation studies of existing
models, instead of funneling resources towards developing new and more complex models relying on
millions of data points.

Indeed, large EHR datasets can hold a multitude of spurious correlations, which ML models are
particularly apt at capturing. Therefore, modelers need to ‘restrain’ their enthusiasm and question
assumptions. To this end, we demonstrated that the use of interpretability approaches is a useful
tool to help illuminate potential biases. In our concrete case study, it became evident that compound
predictors such as Elixhauser score and others related to the underlying disease itself turned out as
important predictors. To a certain extent, while this confirms that the model is sound, i.e., it learned
an expected pattern, the utility of this information is limited, because this only confirms known
risk factors: rather, more important are factors which contain surprising or unexpected content. In
information theory, one would speak of a high information entropy [30]. Most interestingly in this work,
high levels of blood-related factors such hemoglobin featured as protective factors in the analysis carried
out. Though in different contexts, current work points towards an association to this effect [152], but
this remains to be validated clinically.

To what extent can interpretability methods be useful in updating models in validation
studies?

Departing from the hypothesis that interpretability methods could provide an advantage in selecting
features, that perform well for both derivation and validation, i.e., helping to guide model update,
I set out to evaluate the ED-RFE procedure against state-of-the-art feature selection methods. This
novel method relies on the outputs of different interpretability methods combined. We have seen in
Chapter 5 that indeed feature selection methods can be used to derive simpler models, i.e., models
relying on a fewer number of predictors. The results of the experiments conducted suggest that there
are minor gains in performance to be had using the ED-RFE procedure. However, even these minor
gains did not withstand statistical evaluation using synthetic data sets based on the validation cohort
(Mount Sinai).

While not final, as per the experiments, simpler methods, such as F-test, proved to perform better
than more complex methods as measured by AUROC, particularly with respect to my ED-RFE
approach. Reasons for this behavior cannot be pinpointed exactly, but because these algorithms rely
on assumptions that can be partially verified in medical data. Furthermore, with respect to ED-RFE,
a substantial degree of variation could be observed in the results, likely a result of the variability
inherent to interpretability methods because of the sampling procedures involved in their algorithms.

6.2. Revisiting the Contributions

To what extent do this work contributions represent an advancement with respect to existing work?
In the following the three contributions are scrutinized.
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6.2.1. So�ware Platform (MORPHER)

Building upon the standardized modeling building blocks provided in the Toolkit (cf. Table 3.2), the
software platform MORPHER makes it possible to rapidly prototype predictive models, either by ex-
plicitly defining the modeling parameters or by iterating through the available options in a automated
mode. A similar functionality is provided in different analytics tools, such as RapidMinerGo. In the
user study conducted, in which a clinical modeling task was posed, statistically significant differ-
ences could be ascertained only with respect to user interface elements: the RapidMinerGo required
substantially less user input, while my tool required users to choose parameters explicitly. While
a disadvantage at the surface, this means that users had to be more aware of the choices they were
making. At any rate, this result prompted me to develop an optional automated mode. Apart from
the user-facing software, the Toolkit, or the Python framework developed is a further contribution in
itself: by providing out-of-the-box functionalities for modeling and evaluation. The framework can be
continuously updated, so that recurring modeling tasks can be parameterized.

More importantly, however, current modeling tools do not cover the whole spectrum of the predictive
modeling process. In particular with regards to the validation process, it is not trivial to validate
models across institutions, which is provided via MORPHER. We did not address this aspect in
the work, but this lays out the foundation for more sophisticated approaches, e.g., using federated
learning and privacy-preserving data mining: since the underlying technical infrastructure is the same
among the nodes, it would suffice to write the appropriate MorpherJob to handle this scenario (cf.
Section 3.4.3).

Still, a critical issue that remains is the availability of data. The possibility to exchange models
instead of data, i.e., to bring the algorithms to the researchers, provided by MORPHER is a promising
way to foster reproducibility and increase the number of validation studies being published. However,
admittedly, this is still only one piece of the puzzle: if the underlying data is not ready to be processed
by the respective algorithms, model validation cannot take place. Obviously, this issue is probably
as old as data itself and initiatives such as OMOP are gaining more and more acceptance. The way
MORPHER was designed, it can be extended with ease to standardized data sources by means of
available libraries such as inspectOMOP [121].

6.2.2. Case Study: Acute Kidney Injury (AKI)

In tackling the AKI use case, making use of different model metrics and interpretability approaches,
I highlighted the importance of pursing a more comprehensive approach to modeling: it does not
suffice to focus solely on discriminative performance, otherwise the results can be biased. With respect
to the model itself, as one of the few studies in the field, I demonstrated the validation results of the
model in two different hospitals leads to a more cautious evaluation of the performance obtained in
derivation. The largest study on AKI by Google Deep Mind achieved excellent results on a vast cohort
of patients, however their study is yet to be validated externally [140].

Furthermore, biases exist not only in terms of model features, but also lie in the choice of perfor-
mance metric: excellent discrimination results as measured by AUROC do not necessarily translate
into excellent calibration or clinical usefulness results. In particular, I demonstrated that a given
model provides clinical benefit, meaning the trade-off between true and false positives only in selected
decision threshold ranges, rather over all possible thresholds. These results highlight the need for
more comprehensive evaluation in clinical modeling, a need recognized in the TRIPOD statement.
Concretely, I made a contribution to this problem in that the recommended metrics by the TRIPOD
statement are implemented out of the box in MORPHER, i.e., readily available for modelers.

Finally, a fundamental limitation is concerned with model impact on clinical care, which was not an
object of this dissertation but is nevertheless critical. If a predictive solution is to be deployed at all in
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practice, it should either provide tangible benefits for the patients, i.e., better outcomes, or substantially
ease the burden of care personnel, which translates into better health care delivery. Such an evaluation
requires setting up an appropriate RCT. This was not touched upon during this thesis, but MORPHER
Web provides a set of APIs that could be extended to support, e.g., the FHIR RiskAssessment profile,
which, in turn, could be directly integrated into a Hospital Information System (HIS) to facilitate
clinical trials [184].

6.2.3. Model Evaluation

Feature selection is widely applied in bioinformatics for high-dimensional datasets, with several works
evaluating strategies side-by-side. Given this genomics focus, however, few works to date had dealt
specifically with clinical predictive modeling including external validation performance. As such, it
had been unclear whether features selected from a derivation cohort would be equally important in a
validation cohort.

Performing this task upon derivation can indeed be advantageous, as demonstrated in Chapter 5.
As expected not all methods perform equally. As evidenced by the results, my ED-RFE did not
substantially outperform simpler statistical methods (F-test). Indeed, similar results had been reported
in the literature, with statistical methods performing better than more complex wrapper methods [17,
170, 171]. It is striking to also verify that for this specific scenario of feature selection across cohorts for
clinical predictive modeling. To a certain extent, these results cast some shadow on the “algorithmic
arms race" with respect to artificial intelligence applications in a medical context: more complex does
not necessarily mean better. Rather, a return towards simpler methods, with fewer assumptions, could
prove more beneficial than convoluted methods. Yet, the ED-RFE procedure represents a further tool
in the modeler’s ‘utility belt’ that can provide additional insight, possibly highlighting features which
might have gone unnoticed by other methods.

The evaluation conducted had several limitations, most importantly the datasets utilized were
synthetic and, as such, could have suffered from inherent statistical biases. Also, we restricted the
evaluation to two ensemble algorithms, RF and GBDT. A different picture might emerge for other
algorithms.

6.3. Directions for Future Research

What were lessons learned that can inform future research efforts? Here, I provide general directions
for future research based on the insights gleaned throughout this work. These recommendations touch
on aspects regarding 1) collaboration between data scientists and clinicians, 2) need for embedded
educational support 3) the need for a formal experiment description language for clinical modeling, 4)
data engineering tools for data preparation/harmonization, and the need of a feature taxonomy.

More support for collaboration between clinicians and data scientists. In the interviews con-
ducted, one aspect that was often mentioned was the possibility to use MORPHER as hub for clinicians
and data scientists to collaborate. This was not the original goal of the platform, so there are limita-
tions. Upcoming tool support for predictive modeling should be designed with that very goal in mind:
given that predictive modeling is by definition an interdisciplinary endeavor, solutions to streamline
this process are welcome. For example, models could go through a ‘life cycle’, from inception till
maturity (multiple validations), in which each step has input from both clinicians and data scientists
iteratively.

Need for embedded educational support. Clinical modeling is a complex activity by definition.
Without the proper background knowlegde, any modeling tool can be misused and produce ques-
tionable results. Building the required knowlegde takes time, but this can be somewhat facilitated
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by appropriate educational resources embedded in the tools themselves. This could be achieved, e.g.,
using integrated quizes, linking litature references and other strategies. This is of critical importance
if collaboration is to take place between clinicians and data scientists.

Necessity of a formal experiment description language. We have seen that a multitude of param-
eters can be defined when modeling, from imputation method, to sampling to evaluation metrics.
While complex, those parameters can be mapped, as we have sought to demonstrate with this work.
However, the diversity of tools available will not go away, since every researcher is familiar with their
own ‘tried and true’ approach. If a formal description language were available, in which most model-
ing decisions are documented in a structured, machine-readable format, available tools could easily
parse this resource and replicate the experiment. I achieved this to a certain extent with MORPHER
and BPMN 2.0, but more research into this topic is necessary.

Data engineering tools for data preparation. Modeling requires the availability of high-quality
datasets that are structurally and semantically compatible if validation studies are to take place at
all. While iniatives such as OMOP and openEHR are poised to solve this problem, their penetration
remains limited. While the community waits for existing resources to be migrated to those standards,
better tools are necessary which make it possible to match and harmonize datasets with less effort.
Better yet, these tools should enable data quality experts and modelers to work together. Indeed, this
was one of the frequently reported items during interviews.

Need for a taxomy of features in EHR data. A large part of this work was dedicated to analyzing
the impact of specific features on model performance. However, different features have different
inhrent properties. They can be either objective (such as laboratory value), or subjective (result from
an anamnesis). They can be modifiable via a given intervention, such as blood pressure, and thereby
have high clinical potential, or fixed, such as age, against which not much can be done, from a clinical
perspective. They can be easy to acquire (body temperature) or be associate with risks for the patient
(lumbar punction). Particularly coupled with interpretability approaches, a ‘feature taxonomy’ could
be an important tool in further assessing the clinical utility of prediction models, particularly with
respect to how they can be actually deployed in practice.

∗ ∗ ∗

Ultimately, this work has demonstrated that more raw computational power is not necessarily
the answer when it comes to clinical predictive modeling. Rather, clinicians and data scientists
should embrace the existing body of knowledge and devise ways to make the art of modeling more
reproducible, transparent and accessible.
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A. Appendix

A.2. So�ware Platform for Clinical Predictive Modeling

A.2.1. Constituent Items for Performance and E�ort Expectancy

A.2.2. Modeling Task: How-To

This document was provided to study participants to inform them what to expect.

A.2.3. Modeling Task: Description

This document describes in detail what the required modeling task was.

A.2.4. Modeling Task: Questionnaire

This document contains the questions users were required to answer after using one of the selected
tools.

A.2.5. Modeling Task: User Questionnaire

This document contains the information that was required from participants.

The documents are provided below.
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Dear study participant, thanks for taking the time to participate in this research. This will help us to 

gain insights on how prospective researchers interact and use tools for clinical predictive modeling. You 

are expressly invited to ask any questions.  

 

1. Download the necessary files and access the assigned software. 

To do so, follow the link provided to you via e-mail. It will contain the files 

needed to carry out the study, including the software link (please check 

README.txt), the modeling task description, the introductory video and the 

Activity Monitor. Unzip the contents to your prefered location. 

 

2. Watch the introductory video and try to replicate the results displayed. 

The introductory video Tutorial.mp4 will help you to get acquainted with 

the tool to carry out the modeling task. As you watch the video, try to 

replicate the steps presented to familiarize yourself. 

 

3. Complete the proposed clinical modelling task. 

Read through the file Task Description.pdf. Once 

you are done reading, please launch the app 

ActivityMonitor.jar and click “Start Session” (1). 

Your mouse clicks and movements will be logged 

locally. You can now use the tool to complete the fulfill 

the task description. 

 

4. Save your activity information. 

Once you are done using the tool, please press “Stop 

Session” (2) and then press “Save Session” (3). Please 

note that the saved file does not contain any person-

identifying information (you can inspect it yourself).  

 

5. Now fill out the proposed task questionnaire. 

You will have 15min to fill out the questionnaire. You do not have to answer everything – just do 

as much as you can within the allotted time. Do not forget to add your activity file contents to 

the form. 

Questionnaire Link 

https://forms.gle/gFCpo5SEC2iD6X9w7. 

 

Thanks again for your participation!  

 

 
1 

 
2 

 
3 
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A. Appendix

Table A.2.: Constituent items for performance and effort expectancy according to Venkatesh et al.’s Unified Theory
of Acceptance and Use of Technology (UTAUT) framework.

Construct Metric Using the System will...

Pe
rf

or
m

an
ce

Ex
pe

ct
an

cy

Perceived Usefulness

. . . enable me to perform clinical predictive modeling more quickly.

. . . improve my performance at clinical predictive modeling.

. . . increase my productivity in at clinical predictive modeling.

. . . enhance my effectiveness at clinical predictive modeling.

. . . make it easier to perform clinical predictive modeling.

. . . be useful in performing clinical predictive modeling.

Job Fit

. . . have no effect on my performance at clinical predictive modeling.

. . . can decrease the time needed for my important job responsibilities.

. . . can significantly increase the quality of output in my clinical predicitive modeling tasks.

. . . increase the effectiveness of performing clinical predictive modeling tasks.

. . . increase the quantity of output for the same amount of effort.

. . . can in general assist in clinical predictive modeling considering all tasks.

Relative Advantages

. . . enables me to accomplish clinical predictive modeling tasks more quickly.

. . . improves the quality of the clinical predictive modeling work I do.

. . . makes it easier to perform clinical predictive modeling.

. . . enhances my effectiveness on clinical predictive modeling.

. . . increases my productivity.

Ef
fo

rt
Ex

pe
ct

an
cy

Perceived Ease of Use

. . . learning to operate the system would be easy for me.

. . . I would find it easy to get the system to do what I want it to do.

. . . my interaction with the system would be clear and understandable.

. . . I would find the system flexible to interact with.

. . . it would be easier for me to become skillful at using the system.

. . . I would find the system easy to use.

Complexity

. . . using the system takes too much time from my normal duties.

. . . working with the system is so complicated, it is difficult to understand what is going on.

. . . using the system involves too much time doing mechanical operations (e.g. data input).

. . . it takes too long to learn how to use the system to make it worth the effort.

Ease of Use

. . . my interaction with the system is clear and understandable.

. . . I believe that it is easy to get the system to do what I want it to do.

. . . overall, I believe the system is easy to use.

. . . learning to operate the system is easy for me.
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Clinical Modeling Task 
Here you will perform a pre-defined clinical modeling task. This task entails developing a clinical 

predictive model to ascertain the risk of chronic kidney disease based on an open source data set. 

Please use the tool provided to answer the items below. 

Preparation 

• Use case description: Chronic Kidney Disease (CKD) is defined as abnormalities of the kidney 

structure or function, present for at least 3 months, with clearly implications for the patients’ 

health. These alterations are identified via imaging or biopsy studies, or inferred from 

laboratory tests and other clinical data. 

• Objective: Train a model to predict the presence of CKD on the subjects given the available 

clinical information. 

• Target: predict occurrence of CKD. 

Dataset Selection 

• For your cohort, please use the dataset provided chronic_kidney_disease.csv . 

• Upload the available data in the modeling tool as per the tool’s instructions  

Predictor Handling 

• Remove from the model the Patient ID (it should not be part of the model). 

Model Generation 

• Cohort: Chronic Kidney Disease. 

• Use mean imputation for missing data. 

• Retain 20% of the dataset for test (Test-split validation). 

• Target: CKD. 

• Use the algorithms: logistic regression, decision tree, random forest, gradient-boosting 

decision tree. 

Model Evaluation 

For evaluating the model, please obtain the following metrics (if your tool supports the given 

metrics, if not leave blank): 

• Discrimination: area under the curve (AUC), precision, recall, F1-score 

• Calibration: alpha calibration (intercept), beta calibration (slope) 

• Clinical usefulness: treated, all, ADAPT 

Model Interpretation 

For evaluating the model, please obtain feature importance using the following methods: 

• Global surrogate 

• Local surrogate 

• Model-based Feature Importance 

A. Appendix
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MORPHER Clinical Modeling Task 
This part is about using the MORPHER app while performing a pre-defined clinical modeling task. This 
task entails developing a clinical predictive model to ascertain the risk of chronic kidney disease 
based on an open source data set. Please use the tool provided to answer the items below. 
 

Data Selection  

1. What is the incidence rate of the outcome, 
i.e., percentage number of CKD cases? 

2. What is the number of predictors included in 
the analysis? 

¨ 0.5% 
¨ 25%  
¨ 50% 
¨ Cannot answer 

¨ 25 
¨ 26 
¨ 400 
¨ Cannot answer 

3. What is the percentage of cells with 
missing data? 

4. What is the average age of the study 
participants? 

¨ Less than 0.5% 
¨ Less than 10% 
¨ More than 25%  
¨ More than 50% 
¨ Cannot answer 

¨ 10 
¨ 20 
¨ 100 
¨ Cannot answer 

  
5. Choose 3 features that you consider the 

most important a priori. 
 

6. Indicate the 3 features with the most NA’s 
 

__________________________________ 
__________________________________ 
__________________________________ 
 

__________________________________ 
__________________________________ 
__________________________________ 
 

Dataset Handling 
7. How was any missing data handled in the 

modeling process? 
 

8. Why “Patient ID” needs to be deleted from 
the model? 
 

¨ No imputation 
¨ Mean imputation 
¨ K Nearest Neighbors  
¨ Cannot answer  

¨ It is a cofounder feature. 
¨ It is too relevant for the model. It will 
overperform. 
¨ It is related with the age of the patient. 
¨ Cannot answer 
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Model Generation 
9.  What were the modeling algorithms 

utilized? 
10. What outcome are the different models 

predicting? 
 

 
¨ Logistic Regression 
¨ Random Forest 
¨ Decision Tree 
¨ Gradient-Boosting Decision Tree  
¨ Cannot answer 

 
¨ The appearance of AKD 
¨ The appearance of CKD 
¨ The relation between AKD and CKD 
¨ Cannot answer 
 

11.  How was model performance evaluated? 12.  What types of metrics were utilized? 

¨ Internal validation 
¨ External validation 
¨ Cannot answer 
 

¨ Discrimination 
¨ Calibration 
¨ Clinical Usefulness 
 
 

  

Model Evaluation 

Please fill out the table below according to the results you obtained for the above algorithms. Insert 
a hyphen “—“ if you are not sure of the value or have not developed a model the given algorithm.  

 
Algorithm Metric Value 

Decision Tree 

Precision  

Recall  

Area Under the Curve (AUC)  

Logistic Regression 

Precision  

Recall  

Area Under the Curve (AUC)  

Random Forest 

Precision  

Recall  

Area Under the Curve (AUC)  

Gradient-boosting 
Decision Tree 

Precision  

Recall  

Area Under the Curve (AUC)  

Multilayer 
Perceptron 

Precision  

Recall  

Area Under the Curve (AUC)  
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13.  Which model performs the best? 14.  Which model performs the worst? 

¨ Logistic Regression 
¨ Random Forest 
¨ Decision Tree 
¨ Gradient-Boosting Decision Tree  
¨ Cannot answer 

 

¨ Logistic Regression 
¨ Random Forest 
¨ Decision Tree 
¨ Gradient-Boosting Decision Tree  
¨ Cannot answer 
 

  

Model Interpretation 

Please report the three most important features obtained by any of the models developed 
previously using the method “Model-based Feature Importance”.  

Algorithm Top Feature (Top 1, 2, 3) Importance 

Decision Tree 

  

  

  

Logistic Regression 

  

  

  

Random Forest 

  

  

  

Gradient-boosting 
Decision Tree 

  

  

  

Multilayer 
Perceptron 

  

  

  

 
15. Are the features chosen in question # 5 

among the top 3 after the interpretation 
has been made? 

 

 
16. According to the different models, what are 

the 2 most important factors in the 
appearance of CKD? 

 
¨ Yes. 
¨ No 
     Which: 
__________________________________ 
__________________________________ 
__________________________________ 

 
__________________________________ 
 
__________________________________ 
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User Activity 
 
Please paste the content of your user activity during usage of the tool (Activity Monitor). 

 

 

Additional questions 
 
Please answer the following questions. They are based entirely in your opinion. 

 
1. Which limitations did you find using this dataset? 

_____________________________________________________________________
_____________________________________________________________________
_____________________________________________________________________ 
 

2. Which limitations did you find using this tool? 
_____________________________________________________________________
_____________________________________________________________________
_____________________________________________________________________ 

 
3. Which limitations did you find with the information given in general? 

_____________________________________________________________________
_____________________________________________________________________
_____________________________________________________________________ 

 
4. BONUS: If you were creating a research paper, how would you call it? 

_____________________________________________________________________
_____________________________________________________________________
_____________________________________________________________________ 
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Participant Information 
 

Gender: ¨ female   ¨ male   ¨ other   |    Age: ______   ¨ prefer not to say 

 
1. What is your profession? 
 

¨ Research clinician / medical expert  
¨ Data scientist / ML researcher 
¨ Other: _________________ 

 
2. Did your university or college studies cover the topic of clinical predictive modeling 

and/or epidemiology? 
 

¨ Yes 
¨ No 

 
3. Have you ever performed clinical predictive modeling yourself or were (co-)author of a 

research article that included results of a clinical predictive model? 
 

¨ Yes 
¨ No 

 
4. Have you ever interpreted the results of a clinical predictive model, including research 

publications? 
 

¨ Yes 
¨ No 

 
5. Regarding your previous knowledge and exposure to programming, statistical packages, 

and clinical predictive modeling in general? 
 

 Strongly 
disagree Disagree  Neutral Agree Strongly 

agree 

I am experienced conducting and evaluating 
clinical predictive modeling studies.  ¨ ¨ ¨ ¨ ¨ 

I am experienced using Python and/or R 
languages for machine learning (coding).  ¨ ¨ ¨ ¨ ¨ 

I am experienced using packages such as 
SAS, SPSS or tools such as Weka and Orange ¨ ¨ ¨ ¨ ¨ 
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