• Treffer 2 von 18
Zurück zur Trefferliste

Fractional electron transfer kinetics and a quantum breaking of ergodicity

  • The dissipative curve-crossing problem provides a paradigm for electron-transfer (ET) processes in condensed media. It establishes the simplest conceptual test bed to study the influence of the medium's dynamics on ET kinetics both on the ensemble level, and on the level of single particles. Single electron description is particularly important for nanoscaled systems like proteins, or molecular wires. Especially insightful is this framework in the semiclassical limit, where the environment can be treated classically, and an exact analytical treatment becomes feasible. Slow medium's dynamics is capable of enslaving ET and bringing it on the ensemble level from a quantum regime of nonadiabatic tunneling to the classical adiabatic regime, where electrons follow the nuclei rearrangements. This classical adiabatic textbook picture contradicts, however, in a very spectacular fashion to the statistics of single electron transitions, even in the Debye, memoryless media, also named Ohmic in the parlance of the famed spin-boson model. On theThe dissipative curve-crossing problem provides a paradigm for electron-transfer (ET) processes in condensed media. It establishes the simplest conceptual test bed to study the influence of the medium's dynamics on ET kinetics both on the ensemble level, and on the level of single particles. Single electron description is particularly important for nanoscaled systems like proteins, or molecular wires. Especially insightful is this framework in the semiclassical limit, where the environment can be treated classically, and an exact analytical treatment becomes feasible. Slow medium's dynamics is capable of enslaving ET and bringing it on the ensemble level from a quantum regime of nonadiabatic tunneling to the classical adiabatic regime, where electrons follow the nuclei rearrangements. This classical adiabatic textbook picture contradicts, however, in a very spectacular fashion to the statistics of single electron transitions, even in the Debye, memoryless media, also named Ohmic in the parlance of the famed spin-boson model. On the single particle level, ET always remains quantum, and this was named a quantum breaking of ergodicity in the adiabatic ET regime. What happens in the case of subdiffusive, fractional, or sub-Ohmic medium's dynamics, which is featured by power-law decaying dynamical memory effects typical, e.g., for protein macromolecules, and other viscoelastic media? Such a memory is vividly manifested by anomalous Cole-Cole dielectric response in such media. We address this question based both on accurate numerics and analytical theory. The ensemble theory remarkably agrees with the numerical dynamics of electronic populations, revealing a power-law relaxation tail even in a profoundly nonadiabatic electron transfer regime. In other words, ET in such media should typically display fractional kinetics. However, a profound difference with the numerically accurate results occurs for the distribution of residence times in the electronic states, both on the ensemble level and the level of single trajectories. Ergodicity is broken dynamically even in a more spectacular way than in the memoryless case. Our results question the applicability of all the existing and widely accepted ensemble theories of electron transfer in fractional, sub-Ohmic environments, on the level of single molecules, and provide a real challenge to face, both for theorists and experimentalists.zeige mehrzeige weniger

Metadaten exportieren

Weitere Dienste

Suche bei Google Scholar Statistik - Anzahl der Zugriffe auf das Dokument
Metadaten
Verfasserangaben:Igor GoychukORCiDGND
DOI:https://doi.org/10.1103/PhysRevE.99.052136
ISSN:2470-0045
ISSN:2470-0053
Pubmed ID:https://pubmed.ncbi.nlm.nih.gov/31212539
Titel des übergeordneten Werks (Englisch):Physical review : E, Statistical, nonlinear and soft matter physics
Verlag:American Physical Society
Verlagsort:College Park
Publikationstyp:Wissenschaftlicher Artikel
Sprache:Englisch
Datum der Erstveröffentlichung:28.05.2019
Erscheinungsjahr:2019
Datum der Freischaltung:03.02.2021
Band:99
Ausgabe:5
Seitenanzahl:21
Fördernde Institution:Deutsche Forschungsgemeinschaft (German Research Foundation)German Research Foundation (DFG) [GO 2052/3-1]
Organisationseinheiten:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Physik und Astronomie
DDC-Klassifikation:5 Naturwissenschaften und Mathematik / 53 Physik / 530 Physik
Peer Review:Referiert
Publikationsweg:Open Access / Green Open-Access
Verstanden ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.