• search hit 22 of 26
Back to Result List

DecTree v1.0-chemistry speedup in reactive transport simulations

  • The computational costs associated with coupled reactive transport simulations are mostly due to the chemical subsystem: replacing it with a pre-trained statistical surrogate is a promising strategy to achieve decisive speedups at the price of small accuracy losses and thus to extend the scale of problems which can be handled. We introduce a hierarchical coupling scheme in which "full-physics" equation-based geochemical simulations are partially replaced by surrogates. Errors in mass balance resulting from multivariate surrogate predictions effectively assess the accuracy of multivariate regressions at runtime: inaccurate surrogate predictions are rejected and the more expensive equation-based simulations are run instead. Gradient boosting regressors such as XGBoost, not requiring data standardization and being able to handle Tweedie distributions, proved to be a suitable emulator. Finally, we devise a surrogate approach based on geochemical knowledge, which overcomes the issue of robustness when encountering previously unseen dataThe computational costs associated with coupled reactive transport simulations are mostly due to the chemical subsystem: replacing it with a pre-trained statistical surrogate is a promising strategy to achieve decisive speedups at the price of small accuracy losses and thus to extend the scale of problems which can be handled. We introduce a hierarchical coupling scheme in which "full-physics" equation-based geochemical simulations are partially replaced by surrogates. Errors in mass balance resulting from multivariate surrogate predictions effectively assess the accuracy of multivariate regressions at runtime: inaccurate surrogate predictions are rejected and the more expensive equation-based simulations are run instead. Gradient boosting regressors such as XGBoost, not requiring data standardization and being able to handle Tweedie distributions, proved to be a suitable emulator. Finally, we devise a surrogate approach based on geochemical knowledge, which overcomes the issue of robustness when encountering previously unseen data and which can serve as a basis for further development of hybrid physics-AI modelling.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Marco De LuciaORCiD, Michael KühnORCiDGND
DOI:https://doi.org/10.5194/gmd-14-4713-2021
ISSN:1991-959X
ISSN:1991-9603
Title of parent work (English):Geoscientific model development : an interactive open access journal of the European Geosciences Union
Subtitle (English):purely data-driven and physics-based surrogates
Publisher:Copernicus
Place of publishing:Göttingen
Publication type:Article
Language:English
Date of first publication:2021/07/29
Publication year:2021
Release date:2023/11/01
Volume:14
Issue:7
Number of pages:18
First page:4713
Last Page:4730
Funding institution:Helmholtz-Gemeinschaft Helmholtz Association [ZT-I-0010]
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Geowissenschaften
DDC classification:5 Naturwissenschaften und Mathematik / 55 Geowissenschaften, Geologie / 550 Geowissenschaften
9 Geschichte und Geografie / 91 Geografie, Reisen / 910 Geografie, Reisen
Peer review:Referiert
Publishing method:Open Access / Gold Open-Access
DOAJ gelistet
License (German):License LogoCC-BY - Namensnennung 4.0 International
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.