• Treffer 4 von 6
Zurück zur Trefferliste

Photodriven transient picosecond top-layer semiconductor to metal phase-transition in p-doped molybdenum disulfide

  • Visible light is shown to create a transient metallic S-Mo-S surface layer on bulk semiconducting p-doped indirect-bandgap 2H-MoS2. Optically created electron-hole pairs separate in the surface band bending region of the p-doped semiconducting crystal causing a transient accumulation of electrons in the surface region. This triggers a reversible 2H-semiconductor to 1T-metal phase-transition of the surface layer. Electron-phonon coupling of the indirect-bandgap p-doped 2H-MoS2 enables this efficient pathway even at a low density of excited electrons with a distinct optical excitation threshold and saturation behavior. This mechanism needs to be taken into consideration when describing the surface properties of illuminated p-doped 2H-MoS2. In particular, light-induced increased charge mobility and surface activation can cause and enhance the photocatalytic and photoassisted electrochemical hydrogen evolution reaction of water on 2H-MoS2. Generally, it opens up for a way to control not only the surface of p-doped 2H-MoS2 but also relatedVisible light is shown to create a transient metallic S-Mo-S surface layer on bulk semiconducting p-doped indirect-bandgap 2H-MoS2. Optically created electron-hole pairs separate in the surface band bending region of the p-doped semiconducting crystal causing a transient accumulation of electrons in the surface region. This triggers a reversible 2H-semiconductor to 1T-metal phase-transition of the surface layer. Electron-phonon coupling of the indirect-bandgap p-doped 2H-MoS2 enables this efficient pathway even at a low density of excited electrons with a distinct optical excitation threshold and saturation behavior. This mechanism needs to be taken into consideration when describing the surface properties of illuminated p-doped 2H-MoS2. In particular, light-induced increased charge mobility and surface activation can cause and enhance the photocatalytic and photoassisted electrochemical hydrogen evolution reaction of water on 2H-MoS2. Generally, it opens up for a way to control not only the surface of p-doped 2H-MoS2 but also related dichalcogenides and layered systems. The findings are based on the sensitivity of time-resolved electron spectroscopy for chemical analysis with photon-energy-tuneable synchrotron radiation.zeige mehrzeige weniger

Metadaten exportieren

Weitere Dienste

Suche bei Google Scholar Statistik - Anzahl der Zugriffe auf das Dokument
Metadaten
Verfasserangaben:Nomi SorgenfreiORCiDGND, Erika GiangrisostomiORCiD, Raphael Martin JayORCiDGND, Danilo KühnORCiDGND, Stefan NepplORCiDGND, Ruslan OvsyannikovORCiD, Hikmet SezenORCiD, Svante SvenssonORCiD, Alexander FöhlischORCiDGND
DOI:https://doi.org/10.1002/adma.202006957
ISSN:0935-9648
ISSN:1521-4095
Pubmed ID:https://pubmed.ncbi.nlm.nih.gov/33661532
Titel des übergeordneten Werks (Englisch):Advanced materials
Verlag:Wiley-VCH
Verlagsort:Weinheim
Publikationstyp:Wissenschaftlicher Artikel
Sprache:Englisch
Datum der Erstveröffentlichung:04.03.2021
Erscheinungsjahr:2021
Datum der Freischaltung:29.04.2024
Freies Schlagwort / Tag:catalysis; dichalcogenides; hydrogen evolution reaction; phase transitions; photoelectron spectroscopy
Band:33
Ausgabe:14
Aufsatznummer:2006957
Seitenanzahl:8
Fördernde Institution:FLAG-ERA Graphene Basic Research 2 2017 in project LaMeS DFGGerman Research Foundation (DFG) [400335214]; Carl Tryggers Foundation (CTS), Sweden; ERCEuropean Research Council (ERC)European Commission [669531 EDAX]; Projekt DEAL
Organisationseinheiten:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Physik und Astronomie
DDC-Klassifikation:5 Naturwissenschaften und Mathematik / 54 Chemie / 540 Chemie und zugeordnete Wissenschaften
6 Technik, Medizin, angewandte Wissenschaften / 66 Chemische Verfahrenstechnik / 660 Chemische Verfahrenstechnik
Peer Review:Referiert
Publikationsweg:Open Access / Hybrid Open-Access
Lizenz (Deutsch):License LogoCC-BY - Namensnennung 4.0 International
Verstanden ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.