• search hit 1 of 1
Back to Result List

Magnitude of the 1920 Haiyuan earthquake reestimated using seismological and geomorphological methods

  • Reported magnitudes ranging between 7.8 and 8.7 highlight a confusion about the true size of the 1920 Haiyuan earthquake, the largest earthquake recorded in the northeast Tibetan Plateau. We compiled a global data set of previously unlooked-at historical seismograms and performed modern computational analyses on the digitized seismic records. We found the epicenter to be near Haiyuan town and obtained a moment magnitude of M-W=7.90.2. Following traditional approaches, we obtained m(B)=7.90.3 with data from 21 stations and M-S(20)=8.10.2 with data from three stations. Geomorphologically, we mapped the surface rupture and horizontal offsets on high-resolution Pleiades satellite and drone imagery that covered the entire western and middle sections of the 1920 Haiyuan earthquake rupture and compiled offsets reported on the eastern section from field measurements in the 1980s. Careful discrimination between single-event and cumulative offsets suggests average horizontal slips of 3.01.0m on the western section, 4.51.5m on the middleReported magnitudes ranging between 7.8 and 8.7 highlight a confusion about the true size of the 1920 Haiyuan earthquake, the largest earthquake recorded in the northeast Tibetan Plateau. We compiled a global data set of previously unlooked-at historical seismograms and performed modern computational analyses on the digitized seismic records. We found the epicenter to be near Haiyuan town and obtained a moment magnitude of M-W=7.90.2. Following traditional approaches, we obtained m(B)=7.90.3 with data from 21 stations and M-S(20)=8.10.2 with data from three stations. Geomorphologically, we mapped the surface rupture and horizontal offsets on high-resolution Pleiades satellite and drone imagery that covered the entire western and middle sections of the 1920 Haiyuan earthquake rupture and compiled offsets reported on the eastern section from field measurements in the 1980s. Careful discrimination between single-event and cumulative offsets suggests average horizontal slips of 3.01.0m on the western section, 4.51.5m on the middle section, and 3.5 +/- 0.5m on the eastern section, indicating a total moment magnitude of M-W=7.8 +/- 0.1. Thus, the seismological and geomorphological results agree within the uncertainties, a weighted average giving a moment magnitude of M-W=7.9 +/- 0.2 for the 1920 Haiyuan earthquake. It is likely that earthquake magnitudes based on the historical M were systematically overestimated. <br /> Plain Language Summary Earthquakes are the main mechanism by which elastic energy accumulating due to tectonic motion is released. As the earthquake magnitude scale is logarithmic, major earthquakes control the bulk of this energy budget and are often the most destructive, like the 1920 Haiyuan earthquake with similar to 230,000 casualties. However, major earthquakes tend to have recurrence periods of several hundred years, longer than our instrumental records. To obtain knowledge of historic major earthquakes, paleoseismologists measure geomorphic offsets and map surface ruptures left by past events and estimate the shaking intensity from historical writings. However, in the case of the Haiyuan earthquake, which happened in the late historic, early instrumental period, the magnitudes reported from these two communities differed significantly. In order to constrain the magnitude of this earthquake for seismic hazard assessment and to reconcile the differences between published magnitudes, we reestimated its magnitude from both newly compiled and digitized seismological records and modern satellite and drone imagery. The results show that the early seismological magnitudes were overestimated, which may affect historical magnitudes systematically. The 1920 Haiyuan earthquake was of a similar magnitude to the 2001 Kokoxili and 2008 Wenchuan earthquakes that also occurred in and around the Tibetan Plateau, instead of more than half a magnitude larger.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Qi OuORCiD, Galina KulikovaORCiDGND, Jingxing YuORCiD, Austin ElliottORCiD, Bethany Parsons, Richard WalkerORCiD
DOI:https://doi.org/10.1029/2019JB019244
ISSN:2169-9313
ISSN:2169-9356
Title of parent work (English):Journal of geophysical research : Solid earth
Publisher:American Geophysical Union
Place of publishing:Washington
Publication type:Article
Language:English
Date of first publication:2020/07/06
Publication year:2020
Release date:2022/10/05
Volume:125
Issue:8
Article number:e2019JB019244
Number of pages:28
Funding institution:Natural Environment Research Council (NERC) through the Looking inside; the Continents from Space (LiCS) large grantUK Research & Innovation; (UKRI)Natural Environment Research Council (NERC) [NE/K001006/1]; Seismicity and Tectonics in Ningxia, Gansu, and Shaanxi (STINGS) project; [NE/N012313/1]; Centre for the Observation of Earthquakes, Volcanoes and; Tectonics (COMET); China Scholarship Council-Pacific Alliance Group; Oxford Scholarship; Great Britain-China Educational Trust; Burdett; Coutts Fund; Ministry of Science and Technology of the People's Republic; of China through the National Key RD Plan [2017YFC1500401]; NERCUK; Research & Innovation (UKRI)Natural Environment Research Council (NERC); [come30001, NE/K011006/1, NE/N012313/1] Funding Source: UKRI
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Geowissenschaften
DDC classification:5 Naturwissenschaften und Mathematik / 55 Geowissenschaften, Geologie / 550 Geowissenschaften
Peer review:Referiert
Publishing method:Open Access / Hybrid Open-Access
License (German):License LogoCC-BY - Namensnennung 4.0 International
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.