• Treffer 33 von 62
Zurück zur Trefferliste

The 3D thermal field across the Alpine orogen and its forelands and the relation to seismicity

  • Temperature exerts a first order control on rock strength, principally via thermally activated creep deformation and on the distribution at depth of the brittle-ductile transition zone. The latter can be regarded as the lower bound to the seismogenic zone, thereby controlling the spatial distribution of seismicity within a lithospheric plate. As such, models of the crustal thermal field are important to understand the localisation of seismicity. Here we relate results from 3D simulations of the steady state thermal field of the Alpine orogen and its forelands to the distribution of seismicity in this seismically active area of Central Europe. The model takes into account how the crustal heterogeneity of the region effects thermal properties and is validated with a dataset of wellbore temperatures. We find that the Adriatic crust appears more mafic, through its radiogenic heat values (1.30E-06 W/m3) and maximum temperature of seismicity (600 degrees C), than the European crust (1.3-2.6E-06 W/m3 and 450 degrees C). We also show that atTemperature exerts a first order control on rock strength, principally via thermally activated creep deformation and on the distribution at depth of the brittle-ductile transition zone. The latter can be regarded as the lower bound to the seismogenic zone, thereby controlling the spatial distribution of seismicity within a lithospheric plate. As such, models of the crustal thermal field are important to understand the localisation of seismicity. Here we relate results from 3D simulations of the steady state thermal field of the Alpine orogen and its forelands to the distribution of seismicity in this seismically active area of Central Europe. The model takes into account how the crustal heterogeneity of the region effects thermal properties and is validated with a dataset of wellbore temperatures. We find that the Adriatic crust appears more mafic, through its radiogenic heat values (1.30E-06 W/m3) and maximum temperature of seismicity (600 degrees C), than the European crust (1.3-2.6E-06 W/m3 and 450 degrees C). We also show that at depths of < 10 km the thermal field is largely controlled by sedimentary blanketing or topographic effects, whilst the deeper temperature field is primarily controlled by the LAB topology and the distribution and parameterization of radiogenic heat sources within the upper crust.zeige mehrzeige weniger

Metadaten exportieren

Weitere Dienste

Suche bei Google Scholar Statistik - Anzahl der Zugriffe auf das Dokument
Metadaten
Verfasserangaben:Cameron SpoonerORCiDGND, Magdalena Scheck-WenderothORCiDGND, Mauro CacaceORCiDGND, Hans-Jürgen GötzeORCiDGND, Elco Luijendijk
DOI:https://doi.org/10.1016/j.gloplacha.2020.103288
ISSN:0921-8181
ISSN:1872-6364
Titel des übergeordneten Werks (Englisch):Global and planetary change
Verlag:Elsevier
Verlagsort:Amsterdam
Publikationstyp:Wissenschaftlicher Artikel
Sprache:Englisch
Datum der Erstveröffentlichung:31.07.2020
Erscheinungsjahr:2020
Datum der Freischaltung:17.04.2023
Freies Schlagwort / Tag:Adria; Alps; Europe; seismicity; steady-state; thermal-field
Band:193
Aufsatznummer:103288
Seitenanzahl:14
Fördernde Institution:Deutsche Forschungsgemeinschaft (DFG)German Research Foundation (DFG)
Organisationseinheiten:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Umweltwissenschaften und Geographie
DDC-Klassifikation:5 Naturwissenschaften und Mathematik / 55 Geowissenschaften, Geologie / 550 Geowissenschaften
Peer Review:Referiert
Publikationsweg:Open Access / Hybrid Open-Access
Lizenz (Deutsch):License LogoCC-BY-NC-ND - Namensnennung, nicht kommerziell, keine Bearbeitungen 4.0 International
Verstanden ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.