• Treffer 1 von 5
Zurück zur Trefferliste

Sub-picosecond charge-transfer at near-zero driving force in polymer:non-fullerene acceptor blends and bilayers

  • Organic photovoltaics based on non-fullerene acceptors (NFAs) show record efficiency of 16 to 17% and increased photovoltage owing to the low driving force for interfacial charge-transfer. However, the low driving force potentially slows down charge generation, leading to a tradeoff between voltage and current. Here, we disentangle the intrinsic charge-transfer rates from morphology-dependent exciton diffusion for a series of polymer:NFA systems. Moreover, we establish the influence of the interfacial energetics on the electron and hole transfer rates separately. We demonstrate that charge-transfer timescales remain at a few hundred femtoseconds even at near-zero driving force, which is consistent with the rates predicted by Marcus theory in the normal region, at moderate electronic coupling and at low re-organization energy. Thus, in the design of highly efficient devices, the energy offset at the donor:acceptor interface can be minimized without jeopardizing the charge-transfer rate and without concerns about a current-voltageOrganic photovoltaics based on non-fullerene acceptors (NFAs) show record efficiency of 16 to 17% and increased photovoltage owing to the low driving force for interfacial charge-transfer. However, the low driving force potentially slows down charge generation, leading to a tradeoff between voltage and current. Here, we disentangle the intrinsic charge-transfer rates from morphology-dependent exciton diffusion for a series of polymer:NFA systems. Moreover, we establish the influence of the interfacial energetics on the electron and hole transfer rates separately. We demonstrate that charge-transfer timescales remain at a few hundred femtoseconds even at near-zero driving force, which is consistent with the rates predicted by Marcus theory in the normal region, at moderate electronic coupling and at low re-organization energy. Thus, in the design of highly efficient devices, the energy offset at the donor:acceptor interface can be minimized without jeopardizing the charge-transfer rate and without concerns about a current-voltage tradeoff.zeige mehrzeige weniger

Volltext Dateien herunterladen

  • zmnr1422.pdfeng
    (1074KB)

    SHA-512ff68806e0d0cf9ef0b69873a8abac4d3b206ae4710e4b02a9523719228caf6006022249c91972bc2b073826d71be7d15d49b4dec9a59aebcf10dfc34d28465ec

Metadaten exportieren

Weitere Dienste

Suche bei Google Scholar Statistik - Anzahl der Zugriffe auf das Dokument
Metadaten
Verfasserangaben:Yufei ZhongORCiD, Martina CausaGND, Gareth John MooreORCiD, Philipp KrauspeGND, Bo Xiao, Florian GüntherORCiD, Jonas KublitskiORCiDGND, Eyal BarOr, Erjun ZhouORCiD, Natalie BanerjiORCiD
URN:urn:nbn:de:kobv:517-opus4-511936
DOI:https://doi.org/10.25932/publishup-51193
ISSN:1866-8372
Titel des übergeordneten Werks (Deutsch):Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe
Schriftenreihe (Bandnummer):Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe (1422)
Publikationstyp:Postprint
Sprache:Englisch
Datum der Erstveröffentlichung:11.02.2020
Erscheinungsjahr:2020
Veröffentlichende Institution:Universität Potsdam
Datum der Freischaltung:13.03.2024
Freies Schlagwort / Tag:Donor-Acceptor (DA) interface; donor; efficiency; electron-transfer; energy; impact; organic solar cell; photovoltaics; seperation; transfer dynamics
Ausgabe:1
Aufsatznummer:833
Seitenanzahl:12
Quelle:Nat Commun 11, 833 (2020). https://doi.org/10.1038/s41467-020-14549-w
Organisationseinheiten:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Physik und Astronomie
DDC-Klassifikation:5 Naturwissenschaften und Mathematik / 53 Physik / 530 Physik
Peer Review:Referiert
Publikationsweg:Open Access / Green Open-Access
Lizenz (Deutsch):License LogoCC-BY - Namensnennung 4.0 International
Externe Anmerkung:Bibliographieeintrag der Originalveröffentlichung/Quelle
Verstanden ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.