Das Suchergebnis hat sich seit Ihrer Suchanfrage verändert. Eventuell werden Dokumente in anderer Reihenfolge angezeigt.
  • Treffer 14 von 126
Zurück zur Trefferliste

A hierarchical effective mode approach to phonon-driven multilevel vibrational relaxation dynamics at surfaces

  • We discuss an efficient Hierarchical Effective Mode (HEM) representation of a high-dimensional harmonic oscillator bath, which describes phonon-driven vibrational relaxation of an adsorbate-surface system, namely, deuterium adsorbed on Si(100). Starting from the original Hamiltonian of the adsorbate-surface system, the HEM representation is constructed via iterative orthogonal transformations, which are efficiently implemented with Householder matrices. The detailed description of the HEM representation and its construction are given in the second quantization representation. The hierarchical nature of this representation allows access to the exact quantum dynamics of the adsorbate-surface system over finite time intervals, controllable via the truncation order of the hierarchy. To study the convergence properties of the effective mode representation, we solve the time-dependent Schrodinger equation of the truncated system-bath HEM Hamiltonian, with the help of the multilayer extension of the Multiconfigurational Time-DependentWe discuss an efficient Hierarchical Effective Mode (HEM) representation of a high-dimensional harmonic oscillator bath, which describes phonon-driven vibrational relaxation of an adsorbate-surface system, namely, deuterium adsorbed on Si(100). Starting from the original Hamiltonian of the adsorbate-surface system, the HEM representation is constructed via iterative orthogonal transformations, which are efficiently implemented with Householder matrices. The detailed description of the HEM representation and its construction are given in the second quantization representation. The hierarchical nature of this representation allows access to the exact quantum dynamics of the adsorbate-surface system over finite time intervals, controllable via the truncation order of the hierarchy. To study the convergence properties of the effective mode representation, we solve the time-dependent Schrodinger equation of the truncated system-bath HEM Hamiltonian, with the help of the multilayer extension of the Multiconfigurational Time-Dependent Hartree (ML-MCTDH) method. The results of the HEM representation are compared with those obtained with a quantum-mechanical tier-model. The convergence of the HEM representation with respect to the truncation order of the hierarchy is discussed for different initial conditions of the adsorbate-surface system. The combination of the HEM representation with the ML-MCTDH method provides information on the time evolution of the system (adsorbate) and multiple effective modes of the bath (surface). This permits insight into mechanisms of vibration-phonon coupling of the adsorbate-surface system, as well as inter-mode couplings of the effective bath.zeige mehrzeige weniger

Metadaten exportieren

Weitere Dienste

Suche bei Google Scholar Statistik - Anzahl der Zugriffe auf das Dokument
Metadaten
Verfasserangaben:Eric W. FischerORCiDGND, Michael WertherORCiDGND, Foudhil BouaklineORCiDGND, Peter SaalfrankORCiDGND
DOI:https://doi.org/10.1063/5.0017716
ISSN:0021-9606
ISSN:1089-7690
Pubmed ID:https://pubmed.ncbi.nlm.nih.gov/35287458
Titel des übergeordneten Werks (Englisch):The journal of chemical physics : bridges a gap between journals of physics and journals of chemistry
Verlag:American Institute of Physics
Verlagsort:Melville
Publikationstyp:Wissenschaftlicher Artikel
Sprache:Englisch
Datum der Erstveröffentlichung:10.08.2020
Erscheinungsjahr:2020
Datum der Freischaltung:30.03.2023
Band:153
Ausgabe:6
Aufsatznummer:064704
Seitenanzahl:15
Fördernde Institution:Deutsche Forschungsgemeinschaft (DFG)German Research Foundation (DFG); [Sa 547/9]
Organisationseinheiten:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Chemie
DDC-Klassifikation:5 Naturwissenschaften und Mathematik / 53 Physik / 530 Physik
5 Naturwissenschaften und Mathematik / 54 Chemie / 540 Chemie und zugeordnete Wissenschaften
Peer Review:Referiert
Verstanden ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.