### Refine

#### Year of publication

#### Keywords

- photochemistry (3)
- simulations (3)
- absorbtion fine-structure (2)
- augmented-wave method (2)
- density functional calculations (2)
- graphite (2)
- hydrogen (2)
- initio molecular-dynamics (2)
- molecules (2)
- oxidation (2)

#### Institute

In Near Edge X-Ray Absorption Fine Structure (NEXAFS) spectroscopy X-Ray photons are used to excite tightly bound core electrons to low-lying unoccupied orbitals of the system. This technique offers insight into the electronic structure of the system as well as useful structural information. In this work, we apply NEXAFS to two kinds of imidazolium based ionic liquids ([CnC1im]+[NTf2]- and [C4C1im]+[I]-). A combination of measurements and quantum chemical calculations of C K and N K NEXAFS resonances is presented. The simulations, based on the transition potential density functional theory method (TP-DFT), reproduce all characteristic features observed by the experiment. Furthermore, a detailed assignment of resonance features to excitation centers (carbon or nitrogen atoms) leads to a consistent interpretation of the spectra.

A multi-reference study of the byproduct formation for a ring-closed dithienylethene photoswitch
(2015)

Photodriven molecular switches are sometimes hindered in their performance by forming byproducts which act as dead ends in sequences of switching cycles, leading to rapid fatigue effects. Understanding the reaction pathways to unwanted byproducts is a prerequisite for preventing them. This article presents a study of the photochemical reaction pathways for byproduct formation in the photochromic switch 1,2-bis-(3-thienyl)-ethene. Specifically, using single- and multi-reference methods the post-deexcitation reaction towards the byproduct in the electronic ground state S0 when starting from the S1–S0 conical intersection (CoIn), is considered in detail. We find an unusual low-energy pathway, which offers the possibility for the formation of a dyotropic byproduct. Several high-energy pathways can be excluded with high probability.

The interaction of water with α-alumina (i.e. α-Al2O3) surfaces is important in a variety of applications and a useful model for the interaction of water with environmentally abundant aluminosilicate phases. Despite its significance, studies of water interaction with α-Al2O3 surfaces other than the (0001) are extremely limited. Here we characterize the interaction of water (D2O) with a well defined α-Al2O3(1[1 with combining macron]02) surface in UHV both experimentally, using temperature programmed desorption and surface-specific vibrational spectroscopy, and theoretically, using periodic-slab density functional theory calculations. This combined approach makes it possible to demonstrate that water adsorption occurs only at a single well defined surface site (the so-called 1–4 configuration) and that at this site the barrier between the molecularly and dissociatively adsorbed forms is very low: 0.06 eV. A subset of OD stretch vibrations are parallel to this dissociation coordinate, and thus would be expected to be shifted to low frequencies relative to an uncoupled harmonic oscillator. To quantify this effect we solve the vibrational Schrödinger equation along the dissociation coordinate and find fundamental frequencies red-shifted by more than 1500 cm−1. Within the context of this model, at moderate temperatures, we further find that some fraction of surface deuterons are likely delocalized: dissociatively and molecularly absorbed states are no longer distinguishable.

A novel quantum method to deal with typical system-bath dynamical problems is introduced. Subsystem discrete variable representation and bath coherent-state sets are used to write down a multiconfigurational expansion of the wave function of the whole system. With the help of the Dirac-Frenkel variational principle, simple equations of motion-a kind of Schrodinger-Langevin equation for the subsystem coupled to (pseudo) classical equations for the bath-are derived. True dissipative dynamics at all times is obtained by coupling the bath to a secondary, classical Ohmic bath, which is modeled by adding a friction coefficient in the derived pseudoclassical bath equations. The resulting equations are then solved for a number of model problems, ranging from tunneling to vibrational relaxation dynamics. Comparison of the results with those of exact, multiconfiguration time-dependent Hartree calculations in systems with up to 80 bath oscillators shows that the proposed method can be very accurate and might be of help in studying realistic problems with very large baths. To this end, its linear scaling behavior with respect to the number of bath degrees of freedom is shown in practice with model calculations using tens of thousands of bath oscillators.

Nonlinear optical response of photochromic azobenzene-functionalized self-assembled monolayers
(2015)

The combination of photochromic and nonlinear optical (NLO) properties of azobenzene-functionalized self-assembled monolayers (SAMs) constitutes an intriguing step towards novel photonic and optoelectronic devices. By utilizing the second-order NLO process of second harmonic generation (SHG), supported by density-functional theory and correlated wave function method calculations, we demonstrate that the photochromic interface provides the necessary prerequisites en route towards possible future technical applications: we find a high NLO contrast on the order of 16% between the switching states. These are furthermore accessible reversibly and with high efficiencies in terms of cross sections on the order of 10−18 cm2 for both photoisomerization reactions, i.e., drivable by means of low-power LED light sources. Finally, both photostationary states (PSSs) are thermally stable at ambient conditions.

We present a new global ground state potential energy surface (PES) for carbon monoxide at a coverage of 1/4, on a rigid Ru(0001) surface [Ru(0001)(2x2):CO]. All six adsorbate degrees of freedom are considered. For constructing the PES, we make use of more than 90 000 points calculated with periodic density functional theory using the RPBE exchange-correlation functional and an empirical van der Waals correction. These points are used for interpolation, utilizing a symmetry-adapted corrugation reducing procedure (CRP). Three different interpolation schemes with increasing accuracy have been realized, giving rise to three flavours of the CRP PES. The CRP PES yields in agreement with the DFT reference and experiments, the atop position of CO to be the most stable adsorption geometry, for the most accurate interpolation with an adsorption energy of 1.69 eV. The CRP PES shows that diffusion parallel to the surface is hindered by a barrier of 430 meV, and that dissociation is facilitated but still activated. As a first "real" application and further test of the new potential, the six-dimensional vibrational Schrodinger equation is solved variationally to arrive at fully coupled, anharmonic frequencies and vibrational wavefunctions for the vibrating, adsorbed CO molecule. Good agreement with experiment is found also here. Being analytical, the new PES opens an efficient way towards multidimensional dynamics. (C) 2014 AIP Publishing LLC.

Carbon monoxide on copper surfaces continues to be a fascinating, rich microlab for many questions evolving in surface science. Recently, hot-electron mediated, femtosecond-laser pulse induced dynamics of CO molecules on Cu(100) were the focus of experiments [Inoue et al., Phys. Rev. Lett. 117, 186101 (2016)] and theory [Novko et al., Phys. Rev. Lett. 122, 016806 (2019)], unraveling details of the vibrational nonequilibrium dynamics on ultrashort (subpicoseconds) timescales. In the present work, full-dimensional time-resolved hot-electron driven dynamics are studied by molecular dynamics with electronic friction (MDEF). Dissipation is included by a friction term in a Langevin equation which describes the coupling of molecular degrees of freedom to electron-hole pairs in the copper surface, calculated from gradient-corrected density functional theory (DFT) via a local density friction approximation (LDFA). Relaxation due to surface phonons is included by a generalized Langevin oscillator model. The hot-electron induced excitation is described via a time-dependent electronic temperature, the latter derived from an improved two-temperature model. Our parameter-free simulations on a precomputed potential energy surface allow for excellent statistics, and the observed trends are confirmed by on-the-fly ab initio molecular dynamics with electronic friction (AIMDEF) calculations. By computing time-resolved frequency maps for selected molecular vibrations, instantaneous frequencies, probability distributions, and correlation functions, we gain microscopic insight into hot-electron driven dynamics and we can relate the time evolution of vibrational internal CO stretch-mode frequencies to measured data, notably an observed redshift. Quantitatively, the latter is found to be larger in MDEF than in experiment and possible reasons are discussed for this observation. In our model, in addition we observe the excitation and time evolution of large-amplitude low-frequency modes, lateral CO surface diffusion, and molecular desorption. Effects of surface atom motion and of the laser fluence are also discussed.

In Near Edge X-Ray Absorption Fine Structure (NEXAFS) spectroscopy X-Ray photons are used to excite tightly bound core electrons to low-lying unoccupied orbitals of the system. This technique offers insight into the electronic structure of the system as well as useful structural information. In this work, we apply NEXAFS to two kinds of imidazolium based ionic liquids ([C(n)C(1)im](+)[NTf2](-) and [C(4)C(1)im](+)[I](-)). A combination of measurements and quantum chemical calculations of C K and N K NEXAFS resonances is presented. The simulations, based on the transition potential density functional theory method (TP-DFT), reproduce all characteristic features observed by the experiment. Furthermore, a detailed assignment of resonance features to excitation centers (carbon or nitrogen atoms) leads to a consistent interpretation of the spectra.

We report quantum chemical calculations, mostly based on density functional theory, on azobenzene and substituted azobenzenes as neutral molecules or ions, in ground and excited states. Both the cis and trans configurations are computed as well as the activation energies to transform one isomer into the other and the possible reaction paths and reaction surfaces along the torsion and inversion modes. All calculations are done for the isolated species, but results are discussed in light of recent experiments aiming at the switching of surface mounted azobenzenes by scanning tunneling microscopes.