Das Suchergebnis hat sich seit Ihrer Suchanfrage verändert. Eventuell werden Dokumente in anderer Reihenfolge angezeigt.
  • Treffer 1 von 8
Zurück zur Trefferliste

Nonadiabatic quantum dynamics of the coherent excited state intramolecular proton transfer of 10-hydroxybenzo[h]quinoline

  • The photoinduced nonadiabatic dynamics of the enol-keto isomerization of 10-hydroxybenzo[h]quinoline (HBQ) are studied computationally using high-dimensional quantum dynamics. The simulations are based on a diabatic vibronic coupling Hamiltonian, which includes the two lowest pi pi* excited states and a n pi* state, which has high energy in the Franck-Condon zone, but significantly stabilizes upon excited state intramolecular proton transfer. A procedure, applicable to large classes of excited state proton transfer reactions, is presented to parametrize this model using potential energies, forces and force constants, which, in this case, are obtained by time-dependent density functional theory. The wave packet calculations predict a time scale of 10-15 fs for the photoreaction, and reproduce the time constants and the coherent oscillations observed in time- resolved spectroscopic studies performed on HBQ. In contrast to the interpretation given to the most recent experiments, it is found that the reaction initiated by 1 pi pi* <- S-0The photoinduced nonadiabatic dynamics of the enol-keto isomerization of 10-hydroxybenzo[h]quinoline (HBQ) are studied computationally using high-dimensional quantum dynamics. The simulations are based on a diabatic vibronic coupling Hamiltonian, which includes the two lowest pi pi* excited states and a n pi* state, which has high energy in the Franck-Condon zone, but significantly stabilizes upon excited state intramolecular proton transfer. A procedure, applicable to large classes of excited state proton transfer reactions, is presented to parametrize this model using potential energies, forces and force constants, which, in this case, are obtained by time-dependent density functional theory. The wave packet calculations predict a time scale of 10-15 fs for the photoreaction, and reproduce the time constants and the coherent oscillations observed in time- resolved spectroscopic studies performed on HBQ. In contrast to the interpretation given to the most recent experiments, it is found that the reaction initiated by 1 pi pi* <- S-0 photoexcitation proceeds essentially on a single potential energy surface, and the observed coherences bear signatures of Duschinsky mode-mixing along the reaction path. The dynamics after the 2 pi pi* <- S-0 excitation are instead nonadiabatic, and the n pi* state plays a major role in the relaxation process. The simulations suggest a mainly active role of the proton in the isomerization, rather than a passive migration assisted by the vibrations of the benzoquinoline backbone. <br /> [GRAPHICS] <br /> .zeige mehrzeige weniger

Metadaten exportieren

Weitere Dienste

Suche bei Google Scholar Statistik - Anzahl der Zugriffe auf das Dokument
Metadaten
Verfasserangaben:David PicconiORCiD
DOI:https://doi.org/10.1007/s43630-021-00112-z
ISSN:1474-905X
ISSN:1474-9092
Pubmed ID:https://pubmed.ncbi.nlm.nih.gov/34657277
Titel des übergeordneten Werks (Englisch):Photochemical & photobiological sciences
Verlag:Springer
Verlagsort:Heidelberg
Publikationstyp:Wissenschaftlicher Artikel
Sprache:Englisch
Datum der Erstveröffentlichung:17.10.2021
Erscheinungsjahr:2021
Datum der Freischaltung:02.02.2023
Freies Schlagwort / Tag:Coherences; Excited state proton transfer; Nonadiabatic effects; Quantum dynamics; Spectroscopy
Band:20
Ausgabe:11
Seitenanzahl:19
Erste Seite:1455
Letzte Seite:1473
Fördernde Institution:Deutsche Forschungsgemeinschaft (DFG)German Research Foundation (DFG) [ME 4215/2-3]
Organisationseinheiten:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Chemie
DDC-Klassifikation:5 Naturwissenschaften und Mathematik / 57 Biowissenschaften; Biologie / 570 Biowissenschaften; Biologie
6 Technik, Medizin, angewandte Wissenschaften / 62 Ingenieurwissenschaften / 620 Ingenieurwissenschaften und zugeordnete Tätigkeiten
Peer Review:Referiert
Publikationsweg:Open Access / Hybrid Open-Access
Lizenz (Deutsch):License LogoCC-BY - Namensnennung 4.0 International
Verstanden ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.