• search hit 5 of 9
Back to Result List

From Ergodic to Region- and Site-Specific Probabilistic Seismic Hazard Assessment: Method Development and Application at European and Middle Eastern Sites

  • The increasing numbers of recordings at individual sites allows quantification of empirical linear site-response adjustment factors (delta S2S(s)) from the ground motion prediction equation (GMPE) residuals. The delta S2S(s) are then used to linearly scale the ergodic GMPE predictions to obtain site-specific ground motion predictions in a partially non-ergodic Probabilistic Seismic Hazard Assessment (PSHA). To address key statistical and conceptual issues in the current practice, we introduce a novel empirical region-and site-specific PSHA methodology wherein, (1) site-to-site variability (phi(S2S)) is first estimated as a random-variance in a mixed-effects GMPE regression, (2) delta S2S(s) at new sites with strong motion are estimated using the a priori phi(S2S), and (3) the GMPE site-specific single-site aleatory variability sigma(ss,s) is replaced with a generic site-corrected aleatory variability sigma(0). Comparison of region- and site-specific hazard curves from our method against the traditional ergodic estimates at 225 sitesThe increasing numbers of recordings at individual sites allows quantification of empirical linear site-response adjustment factors (delta S2S(s)) from the ground motion prediction equation (GMPE) residuals. The delta S2S(s) are then used to linearly scale the ergodic GMPE predictions to obtain site-specific ground motion predictions in a partially non-ergodic Probabilistic Seismic Hazard Assessment (PSHA). To address key statistical and conceptual issues in the current practice, we introduce a novel empirical region-and site-specific PSHA methodology wherein, (1) site-to-site variability (phi(S2S)) is first estimated as a random-variance in a mixed-effects GMPE regression, (2) delta S2S(s) at new sites with strong motion are estimated using the a priori phi(S2S), and (3) the GMPE site-specific single-site aleatory variability sigma(ss,s) is replaced with a generic site-corrected aleatory variability sigma(0). Comparison of region- and site-specific hazard curves from our method against the traditional ergodic estimates at 225 sites in Europe and Middle East shows an approximate 50% difference in predicted ground motions over a range of hazard levels-a strong motivation to increase seismological monitoring of critical facilities and enrich regional ground motion data sets.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Sreeram Reddy KothaORCiDGND, Dino BindiORCiD, Fabrice Pierre CottonORCiDGND
DOI:https://doi.org/10.1193/081016EQS130M
ISSN:8755-2930
ISSN:1944-8201
Title of parent work (English):Earthquake spectra : the professional journal of the Earthquake Engineering Research Institute
Publisher:Earthquake Engineering Research Institute
Place of publishing:Oakland
Publication type:Article
Language:English
Year of first publication:2017
Publication year:2017
Release date:2020/04/20
Volume:33
Number of pages:21
First page:1433
Last Page:1453
Funding institution:[676564]
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Geowissenschaften
Peer review:Referiert
Institution name at the time of the publication:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Erd- und Umweltwissenschaften
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.