• Treffer 5 von 52
Zurück zur Trefferliste

Upper bounding rainbow connection number by forest number

  • A path in an edge-colored graph is rainbow if no two edges of it are colored the same, and the graph is rainbow-connected if there is a rainbow path between each pair of its vertices. The minimum number of colors needed to rainbow-connect a graph G is the rainbow connection number of G, denoted by rc(G).& nbsp;A simple way to rainbow-connect a graph G is to color the edges of a spanning tree with distinct colors and then re-use any of these colors to color the remaining edges of G. This proves that rc(G) <= |V (G)|-1. We ask whether there is a stronger connection between tree-like structures and rainbow coloring than that is implied by the above trivial argument. For instance, is it possible to find an upper bound of t(G)-1 for rc(G), where t(G) is the number of vertices in the largest induced tree of G? The answer turns out to be negative, as there are counter-examples that show that even c .t(G) is not an upper bound for rc(G) for any given constant c.& nbsp;In this work we show that if we consider the forest number f(G), the numberA path in an edge-colored graph is rainbow if no two edges of it are colored the same, and the graph is rainbow-connected if there is a rainbow path between each pair of its vertices. The minimum number of colors needed to rainbow-connect a graph G is the rainbow connection number of G, denoted by rc(G).& nbsp;A simple way to rainbow-connect a graph G is to color the edges of a spanning tree with distinct colors and then re-use any of these colors to color the remaining edges of G. This proves that rc(G) <= |V (G)|-1. We ask whether there is a stronger connection between tree-like structures and rainbow coloring than that is implied by the above trivial argument. For instance, is it possible to find an upper bound of t(G)-1 for rc(G), where t(G) is the number of vertices in the largest induced tree of G? The answer turns out to be negative, as there are counter-examples that show that even c .t(G) is not an upper bound for rc(G) for any given constant c.& nbsp;In this work we show that if we consider the forest number f(G), the number of vertices in a maximum induced forest of G, instead of t(G), then surprisingly we do get an upper bound. More specifically, we prove that rc(G) <= f(G) + 2. Our result indicates a stronger connection between rainbow connection and tree-like structures than that was suggested by the simple spanning tree based upper bound.zeige mehrzeige weniger

Metadaten exportieren

Weitere Dienste

Suche bei Google Scholar Statistik - Anzahl der Zugriffe auf das Dokument
Metadaten
Verfasserangaben:Sunil L. Chandran, Davis Issac, Juho LauriORCiD, Erik Jan van Leeuwen
DOI:https://doi.org/10.1016/j.disc.2022.112829
ISSN:0012-365X
ISSN:1872-681X
Titel des übergeordneten Werks (Englisch):Discrete mathematics
Verlag:Elsevier
Verlagsort:Amsterdam [u.a.]
Publikationstyp:Wissenschaftlicher Artikel
Sprache:Englisch
Datum der Erstveröffentlichung:01.03.2022
Erscheinungsjahr:2022
Datum der Freischaltung:21.03.2024
Freies Schlagwort / Tag:forest number; rainbow connection; upper bound
Band:345
Ausgabe:7
Aufsatznummer:112829
Seitenanzahl:22
Fördernde Institution:Alexander von Humboldt Foundation fellowship
Organisationseinheiten:Digital Engineering Fakultät / Hasso-Plattner-Institut für Digital Engineering GmbH
DDC-Klassifikation:5 Naturwissenschaften und Mathematik / 50 Naturwissenschaften / 500 Naturwissenschaften und Mathematik
Peer Review:Referiert
Lizenz (Deutsch):License LogoKeine öffentliche Lizenz: Unter Urheberrechtsschutz
Verstanden ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.