• search hit 4 of 22
Back to Result List

Measuring vegetation heights and their seasonal changes in the Western Namibian Savanna using spaceborne lidars

  • The Ice, Cloud, and Land Elevation Satellite-2 (ICESat-2) with its land and vegetation height data product (ATL08), and Global Ecosystem Dynamics Investigation (GEDI) with its terrain elevation and height metrics data product (GEDI Level 2A) missions have great potential to globally map ground and canopy heights. Canopy height is a key factor in estimating above-ground biomass and its seasonal changes; these satellite missions can also improve estimated above-ground carbon stocks. This study presents a novel Sparse Vegetation Detection Algorithm (SVDA) which uses ICESat-2 (ATL03, geolocated photons) data to map tree and vegetation heights in a sparsely vegetated savanna ecosystem. The SVDA consists of three main steps: First, noise photons are filtered using the signal confidence flag from ATL03 data and local point statistics. Second, we classify ground photons based on photon height percentiles. Third, tree and grass photons are classified based on the number of neighbors. We validated tree heights with field measurements (n = 55),The Ice, Cloud, and Land Elevation Satellite-2 (ICESat-2) with its land and vegetation height data product (ATL08), and Global Ecosystem Dynamics Investigation (GEDI) with its terrain elevation and height metrics data product (GEDI Level 2A) missions have great potential to globally map ground and canopy heights. Canopy height is a key factor in estimating above-ground biomass and its seasonal changes; these satellite missions can also improve estimated above-ground carbon stocks. This study presents a novel Sparse Vegetation Detection Algorithm (SVDA) which uses ICESat-2 (ATL03, geolocated photons) data to map tree and vegetation heights in a sparsely vegetated savanna ecosystem. The SVDA consists of three main steps: First, noise photons are filtered using the signal confidence flag from ATL03 data and local point statistics. Second, we classify ground photons based on photon height percentiles. Third, tree and grass photons are classified based on the number of neighbors. We validated tree heights with field measurements (n = 55), finding a root-mean-square error (RMSE) of 1.82 m using SVDA, GEDI Level 2A (Geolocated Elevation and Height Metrics product): 1.33 m, and ATL08: 5.59 m. Our results indicate that the SVDA is effective in identifying canopy photons in savanna ecosystems, where ATL08 performs poorly. We further identify seasonal vegetation height changes with an emphasis on vegetation below 3 m; widespread height changes in this class from two wet-dry cycles show maximum seasonal changes of 1 m, possibly related to seasonal grass-height differences. Our study shows the difficulties of vegetation measurements in savanna ecosystems but provides the first estimates of seasonal biomass changes.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Farid AtmaniORCiD, Bodo BookhagenORCiDGND, Taylor SmithORCiDGND
DOI:https://doi.org/10.3390/rs14122928
ISSN:2072-4292
Title of parent work (English):Remote sensing / Molecular Diversity Preservation International (MDPI)
Publisher:MDPI
Place of publishing:Basel, Schweiz
Publication type:Article
Language:English
Date of first publication:2022/06/19
Publication year:2022
Release date:2022/12/06
Tag:GEDI; ICESat-2; canopy height; lidar; savanna
Volume:14
Issue:12
Article number:2928
Print run:12
Number of pages:20
First page:1
Last Page:20
Funding institution:Federal Ministry of Education and Research (BMBF)
Funding number:FKZ 01LL1804A
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Geowissenschaften
DDC classification:6 Technik, Medizin, angewandte Wissenschaften / 62 Ingenieurwissenschaften / 620 Ingenieurwissenschaften und zugeordnete Tätigkeiten
Peer review:Referiert
Grantor:Publikationsfonds der Universität Potsdam
Publishing method:Open Access / Gold Open-Access
License (German):License LogoCC-BY - Namensnennung 4.0 International
External remark:Zweitveröffentlichung in der Schriftenreihe Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe ; 1275
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.