• search hit 2 of 4
Back to Result List

Inducible epigenome editing probes for the role of histone H3K4 methylation in Arabidopsis heat stress memory

  • A temperature-inducible epigenome editing system to knock down histone methylation can be used to study the role of histone H3K4 methylation during heat stress memory in Arabidopsis. <br /> Histone modifications play a crucial role in the integration of environmental signals to mediate gene expression outcomes. However, genetic and pharmacological interference often causes pleiotropic effects, creating the urgent need for methods that allow locus-specific manipulation of histone modifications, preferably in an inducible manner. Here, we report an inducible system for epigenome editing in Arabidopsis (Arabidopsis thaliana) using a heat-inducible dCas9 to target a JUMONJI (JMJ) histone H3 lysine 4 (H3K4) demethylase domain to a locus of interest. As a model locus, we target the ASCORBATE PEROXIDASE2 (APX2) gene that shows transcriptional memory after heat stress (HS), correlating with H3K4 hyper-methylation. We show that dCas9-JMJ is targeted in a HS-dependent manner to APX2 and that the HS-induced overaccumulation of H3K4A temperature-inducible epigenome editing system to knock down histone methylation can be used to study the role of histone H3K4 methylation during heat stress memory in Arabidopsis. <br /> Histone modifications play a crucial role in the integration of environmental signals to mediate gene expression outcomes. However, genetic and pharmacological interference often causes pleiotropic effects, creating the urgent need for methods that allow locus-specific manipulation of histone modifications, preferably in an inducible manner. Here, we report an inducible system for epigenome editing in Arabidopsis (Arabidopsis thaliana) using a heat-inducible dCas9 to target a JUMONJI (JMJ) histone H3 lysine 4 (H3K4) demethylase domain to a locus of interest. As a model locus, we target the ASCORBATE PEROXIDASE2 (APX2) gene that shows transcriptional memory after heat stress (HS), correlating with H3K4 hyper-methylation. We show that dCas9-JMJ is targeted in a HS-dependent manner to APX2 and that the HS-induced overaccumulation of H3K4 trimethylation (H3K4me3) decreases when dCas9-JMJ binds to the locus. This results in reduced HS-mediated transcriptional memory at the APX2 locus. Targeting an enzymatically inactive JMJ protein in an analogous manner affected transcriptional memory less than the active JMJ protein; however, we still observed a decrease in H3K4 methylation levels. Thus, the inducible targeting of dCas9-JMJ to APX2 was effective in reducing H3K4 methylation levels. As the effect was not fully dependent on enzyme activity of the eraser domain, the dCas9-JMJ fusion protein may act in part independently of its demethylase activity. This underlines the need for caution in the design and interpretation of epigenome editing studies. We expect our versatile inducible epigenome editing system to be especially useful for studying temporal dynamics of chromatin modifications.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Vicky OberkoflerORCiD, Isabel BäurleORCiDGND
DOI:https://doi.org/10.1093/plphys/kiac113
ISSN:0032-0889
ISSN:1532-2548
Pubmed ID:https://pubmed.ncbi.nlm.nih.gov/35285498
Title of parent work (English):Plant physiology : an international journal devoted to physiology, biochemistry, cellular and molecular biology, biophysics and environmental biology of plants
Publisher:Oxford University Press
Place of publishing:Oxford
Publication type:Article
Language:English
Date of first publication:2022/03/14
Publication year:2022
Release date:2023/01/02
Volume:189
Issue:2
Number of pages:12
First page:703
Last Page:714
Funding institution:European Research Council [ERC CoG 725295]; Deutsche; Forschungsgemeinschaft [CRC973]; (Project A2)
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Biochemie und Biologie
DDC classification:5 Naturwissenschaften und Mathematik / 58 Pflanzen (Botanik) / 580 Pflanzen (Botanik)
Peer review:Referiert
Publishing method:Open Access / Hybrid Open-Access
License (German):License LogoCC-BY-NC-ND - Namensnennung, nicht kommerziell, keine Bearbeitungen 4.0 International
External remark:Correction: https://doi.org/10.1093/plphys/kiac322
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.