• search hit 37 of 352
Back to Result List

Identification and Quantification of Single and Multi-Adulteration of Beeswax by FTIR-ATR Spectroscopy

  • Marketing of adulterated beeswax foundation has recently become a major economic problem for beekeepers. Paraffin contamination leads to collapse of combs, and stearic acid has a negative influence on the development of bee brood. The quality of beeswax for beekeeping has not been standardized in EU regulations. Recently, it was shown that attenuated total reflectance Fourier-transform infrared spectroscopy (FTIR-ATR) can be used to determine beeswax adulteration. Differences in the IR spectra of authentic beeswax can be identified and calculated through comparison with authentic beeswax. In this study, the method is further validated by employing a high number of samples of authentic beeswax from different origins. Low quantification and detection limits are achieved for paraffin, stearic acid, tallow, carnauba wax, and candelilla wax. Furthermore, the FTIR-ATR analytical conditions are verified by analyzing 358 samples of commercial and beekeeper-produced beeswax foundations. Multi-adulterated samples with as many as five differentMarketing of adulterated beeswax foundation has recently become a major economic problem for beekeepers. Paraffin contamination leads to collapse of combs, and stearic acid has a negative influence on the development of bee brood. The quality of beeswax for beekeeping has not been standardized in EU regulations. Recently, it was shown that attenuated total reflectance Fourier-transform infrared spectroscopy (FTIR-ATR) can be used to determine beeswax adulteration. Differences in the IR spectra of authentic beeswax can be identified and calculated through comparison with authentic beeswax. In this study, the method is further validated by employing a high number of samples of authentic beeswax from different origins. Low quantification and detection limits are achieved for paraffin, stearic acid, tallow, carnauba wax, and candelilla wax. Furthermore, the FTIR-ATR analytical conditions are verified by analyzing 358 samples of commercial and beekeeper-produced beeswax foundations. Multi-adulterated samples with as many as five different additives in beeswax mixtures are identified with the same accuracy as single substances. Additionally, the spectra of a further 14 different natural and synthetic waxes and hardened fats are analyzed and are compared with beeswax. Finally, a spectral library is established that can be used for further studies. Practical Applications: FTIR-ATR is a fast and cost-efficient tool in beeswax analysis for accurately monitoring a high sample volume. Analysis of 358 beeswax foundations showed an adulteration of 21.8% of the samples with paraffin, stearic acid, tallow, and combinations. Based on the results of this study, it is possible to detect beeswax adulteration of less than 3% of these adulterants and their combinations by FTIR-ATR spectroscopy. This method can be used for monitoring beeswax foundations to identify adulterated materials, exclude these materials from the recycling process, and produce high-quality beeswax, which is essential for bee health.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Norman Tanner, Birgit Lichtenberg-KraagORCiD
DOI:https://doi.org/10.1002/ejlt.201900245
ISSN:1438-7697
ISSN:1438-9312
Title of parent work (English):European journal of lipid science and technology
Publisher:Wiley
Place of publishing:Hoboken
Publication type:Article
Language:English
Date of first publication:2019/11/06
Publication year:2019
Release date:2020/10/04
Tag:FTIR-ATR; beeswax; beeswax substitutes; candelilla wax; carnauba wax; multi-adulteration; paraffin; stearic acid; tallow
Volume:121
Issue:12
Number of pages:10
Funding institution:German Beekeeping Association (Deutscher Imkerbund e.V.); Ministries of Agriculture of Brandenburg, Saxony-Anhalt, Saxony and Thuringia; Senate of Berlin
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Biochemie und Biologie
DDC classification:5 Naturwissenschaften und Mathematik / 57 Biowissenschaften; Biologie / 570 Biowissenschaften; Biologie
Peer review:Referiert
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.