• Treffer 10 von 2813
Zurück zur Trefferliste

A beta distribution-based moment closure enhances the reliability of trait-based aggregate models for natural populations and communities

  • Ecological communities are complex adaptive systems that exhibit remarkable feedbacks between their biomass and trait dynamics. Trait-based aggregate models cope with this complexity by focusing on the temporal development of the community’s aggregate properties such as its total biomass, mean trait and trait variance. They are based on particular assumptions about the shape of the underlying trait distribution, which is commonly assumed to be normal. However, ecologically important traits are usually restricted to a finite range, and empirical trait distributions are often skewed or multimodal. As a result, normal distribution-based aggregate models may fail to adequately represent the biomass and trait dynamics of natural communities. We resolve this mismatch by developing a new moment closure approach assuming the trait values to be beta-distributed. We show that the beta distribution captures important shape properties of both observed and simulated trait distributions, which cannot be captured by a Gaussian. We furtherEcological communities are complex adaptive systems that exhibit remarkable feedbacks between their biomass and trait dynamics. Trait-based aggregate models cope with this complexity by focusing on the temporal development of the community’s aggregate properties such as its total biomass, mean trait and trait variance. They are based on particular assumptions about the shape of the underlying trait distribution, which is commonly assumed to be normal. However, ecologically important traits are usually restricted to a finite range, and empirical trait distributions are often skewed or multimodal. As a result, normal distribution-based aggregate models may fail to adequately represent the biomass and trait dynamics of natural communities. We resolve this mismatch by developing a new moment closure approach assuming the trait values to be beta-distributed. We show that the beta distribution captures important shape properties of both observed and simulated trait distributions, which cannot be captured by a Gaussian. We further demonstrate that a beta distribution-based moment closure can strongly enhance the reliability of trait-based aggregate models. We compare the biomass, mean trait and variance dynamics of a full trait distribution (FD) model to the ones of beta (BA) and normal (NA) distribution-based aggregate models, under different selection regimes. This way, we demonstrate under which general conditions (stabilizing, fluctuating or disruptive selection) different aggregate models are reliable tools. All three models predicted very similar biomass and trait dynamics under stabilizing selection yielding unimodal trait distributions with small standing trait variation. We also obtained an almost perfect match between the results of the FD and BA models under fluctuating selection, promoting skewed trait distributions and ongoing oscillations in the biomass and trait dynamics. In contrast, the NA model showed unrealistic trait dynamics and exhibited different alternative stable states, and thus a high sensitivity to initial conditions under fluctuating selection. Under disruptive selection, both aggregate models failed to reproduce the results of the FD model with the mean trait values remaining within their ecologically feasible ranges in the BA model but not in the NA model. Overall, a beta distribution-based moment closure strongly improved the realism of trait-based aggregate models.zeige mehrzeige weniger

Metadaten exportieren

Weitere Dienste

Suche bei Google Scholar Statistik - Anzahl der Zugriffe auf das Dokument
Metadaten
Verfasserangaben:Toni KlauschiesGND, Renato Mendes Coutinho, Ursula GaedkeORCiDGND
DOI:https://doi.org/10.1016/j.ecolmodel.2018.02.001
ISSN:0304-3800
ISSN:1872-7026
Titel des übergeordneten Werks (Englisch):Ecological modelling : international journal on ecological modelling and engineering and systems ecolog
Verlag:Elsevier
Verlagsort:Amsterdam
Publikationstyp:Wissenschaftlicher Artikel
Sprache:Englisch
Jahr der Erstveröffentlichung:2018
Erscheinungsjahr:2018
Datum der Freischaltung:18.10.2021
Freies Schlagwort / Tag:Eco-evolutionary dynamics; Fitness landscape and frequency-dependent selection; Modelling functional diversity; Moment closure; Normal and beta distribution; Skewed and peaked trait distributions
Band:381
Seitenanzahl:32
Erste Seite:46
Letzte Seite:77
Fördernde Institution:German Research Foundation (DFG)German Research Foundation (DFG) [GA 401/26-1]; Sao Paulo Research Foundation (FAPESP), BrazilFundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP) [2014/23497-0]
Organisationseinheiten:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Biochemie und Biologie
DDC-Klassifikation:5 Naturwissenschaften und Mathematik / 57 Biowissenschaften; Biologie / 570 Biowissenschaften; Biologie
Peer Review:Referiert
Verstanden ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.