• search hit 67 of 311
Back to Result List

Tensorial spacetime geometries and background-independent quantum field theory

Tensorielle Raumzeit-Geometrien und hintergrundunabhängige Quantenfeldtheorie

  • Famously, Einstein read off the geometry of spacetime from Maxwell's equations. Today, we take this geometry that serious that our fundamental theory of matter, the standard model of particle physics, is based on it. However, it seems that there is a gap in our understanding if it comes to the physics outside of the solar system. Independent surveys show that we need concepts like dark matter and dark energy to make our models fit with the observations. But these concepts do not fit in the standard model of particle physics. To overcome this problem, at least, we have to be open to matter fields with kinematics and dynamics beyond the standard model. But these matter fields might then very well correspond to different spacetime geometries. This is the basis of this thesis: it studies the underlying spacetime geometries and ventures into the quantization of those matter fields independently of any background geometry. In the first part of this thesis, conditions are identified that a general tensorial geometry must fulfill to serve asFamously, Einstein read off the geometry of spacetime from Maxwell's equations. Today, we take this geometry that serious that our fundamental theory of matter, the standard model of particle physics, is based on it. However, it seems that there is a gap in our understanding if it comes to the physics outside of the solar system. Independent surveys show that we need concepts like dark matter and dark energy to make our models fit with the observations. But these concepts do not fit in the standard model of particle physics. To overcome this problem, at least, we have to be open to matter fields with kinematics and dynamics beyond the standard model. But these matter fields might then very well correspond to different spacetime geometries. This is the basis of this thesis: it studies the underlying spacetime geometries and ventures into the quantization of those matter fields independently of any background geometry. In the first part of this thesis, conditions are identified that a general tensorial geometry must fulfill to serve as a viable spacetime structure. Kinematics of massless and massive point particles on such geometries are introduced and the physical implications are investigated. Additionally, field equations for massive matter fields are constructed like for example a modified Dirac equation. In the second part, a background independent formulation of quantum field theory, the general boundary formulation, is reviewed. The general boundary formulation is then applied to the Unruh effect as a testing ground and first attempts are made to quantize massive matter fields on tensorial spacetimes.show moreshow less
  • Bekanntermaßen hat Albert Einstein die Geometrie der Raumzeit an den Maxwell-Gleichungen abgelesen. Heutzutage nehmen wie diese Geometrie so ernst, dass unsere fundamentale Materietheorie, das Standardmodell der Teilchenphysik, darauf beruht. Sobald es jedoch um die Physik außerhalb des Sonnensystems geht, scheinen einige Dinge unverstanden zu sein. Unabhängige Beobachtungsreihen zeigen, dass wir Konzepte wie dunkle Materie und dunkle Energie brauchen um unsere Modelle mit den Beobachtungen in Einklang zu bringen. Diese Konzepte passen aber nicht in das Standardmodell der Teilchenphysik. Um dieses Problem zu überwinden, müssen wir zumindest offen sein für Materiefelder mit Kinematiken und Dynamiken die über das Standardmodell hinaus gehen. Diese Materiefelder könnten dann aber auch durchaus zu anderen Raumzeitgeometrien gehören. Das ist die Grundlage dieser Arbeit: sie untersucht die zugehörigen Raumzeitgeometrien und beschäftigt sich mit der Quantisierung solcher Materiefelder unabhängig von jeder Hintergrundgeometrie. Im ersten TeilBekanntermaßen hat Albert Einstein die Geometrie der Raumzeit an den Maxwell-Gleichungen abgelesen. Heutzutage nehmen wie diese Geometrie so ernst, dass unsere fundamentale Materietheorie, das Standardmodell der Teilchenphysik, darauf beruht. Sobald es jedoch um die Physik außerhalb des Sonnensystems geht, scheinen einige Dinge unverstanden zu sein. Unabhängige Beobachtungsreihen zeigen, dass wir Konzepte wie dunkle Materie und dunkle Energie brauchen um unsere Modelle mit den Beobachtungen in Einklang zu bringen. Diese Konzepte passen aber nicht in das Standardmodell der Teilchenphysik. Um dieses Problem zu überwinden, müssen wir zumindest offen sein für Materiefelder mit Kinematiken und Dynamiken die über das Standardmodell hinaus gehen. Diese Materiefelder könnten dann aber auch durchaus zu anderen Raumzeitgeometrien gehören. Das ist die Grundlage dieser Arbeit: sie untersucht die zugehörigen Raumzeitgeometrien und beschäftigt sich mit der Quantisierung solcher Materiefelder unabhängig von jeder Hintergrundgeometrie. Im ersten Teil dieser Arbeit werden Bedingungen identifiziert, die eine allgemeine tensorielle Geometrie erfüllen muss um als sinnvolle Raumzeitgeometrie dienen zu können. Die Kinematik masseloser und massiver Punktteilchen auf solchen Raumzeitgeometrien werden eingeführt und die physikalischen Implikationen werden untersucht. Zusätzlich werden Feldgleichungen für massive Materiefelder konstruiert, wie zum Beispiel eine modifizierte Dirac-Gleichung. Im zweiten Teil wird eine hintergrundunabhängige Formulierung der Quantenfeldtheorie, die General Boundary Formulation, betrachtet. Die General Boundary Formulation wird dann auf den Unruh-Effekt angewendet und erste Versuche werden unternommen massive Materiefelder auf tensoriellen Raumzeiten zu quantisieren.show moreshow less

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar Statistics
Metadaten
Author:Dennis Rätzel
URN:urn:nbn:de:kobv:517-opus-65731
Advisor:Martin Wilkens
Document Type:Doctoral Thesis
Language:English
Year of Completion:2013
Publishing Institution:Universität Potsdam
Granting Institution:Universität Potsdam
Date of final exam:2013/06/07
Release Date:2013/06/25
Tag:Elementarteilchen; Hochenergiephysik; Quantenfeldtheorie; Raumzeitgeometrie; Unruh-Effekt
Unruh effect; elementary particles; high energy physics; quantum field theory; spacetime geometry
RVK - Regensburg Classification:US 2300
RVK - Regensburg Classification:US 3460
RVK - Regensburg Classification:UO 4000
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Physik und Astronomie
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 53 Physik / 530 Physik
Licence (English):License LogoCreative Commons - Attribution, Noncommercial, Share Alike 3.0 unported
Notes extern:PACS-Klasifikation: 03.50.-z , 42.15.-i , 02.10.-v , 03.30.+p , 11.10.-z , 04.62.+v , 02.30.Jr , 11.80.Fv