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Chapter 1

Introduction

Since physics is about predicting the future, a basic condition for every physical theory should

be that it is predictive. For a field theory on a differentiable manifold M this condition can be

translated into the condition that there must be a well-posed initial data problem for that field

theory. Interestingly, for matter fields like the Klein-Gordon and the Dirac field that couple to

a Lorentzian metric, at least locally, the existence of a well-posed initial data problem is already

ensured precisely due to the fact that the metric is Lorentzian.

However, in recent years, there have been a number of attempts to establish modified spacetime

backgrounds [1–7]. Most of them were motivated from approaches to quantum gravity [8–18],

but many were also motivated from other particular physical and mathematical models [19–39].

Besides the need for testing grounds for quantum gravity results, the interest in spacetime back-

grounds beyond Lorentzian geometry stems partly from the diversity of observations made over

the last few years suggesting that there is something wrong with our understanding of the mat-

ter content of the universe or gravitational dynamics or both. There are observations of the

gravitational lensing of galaxies [40], high redshift supernovae [41, 42] and the cosmic microwave

background [43, 44] that suggest that an overwhelming 83% of the matter and 95% of the total

mass-energy in the universe is of unknown type. Even worse, one has to assume that this un-

known 83% of the total matter in the universe is not interacting with the electromagnetic field

to match the observations, which earned it the name “dark matter” [45]. This can be interpreted

as a hint of a new particle physics [46] or a new gravitational physics [47]. Considering modified

backgrounds, one would of course expect the new particle physics and gravitational physics to

arise at the same time: On the one hand, the restriction to Lorentzian spacetimes also severely

restricts the type of matter fields that can be considered [48], and this restriction is strongly

used in particle physics [49]. On the other hand, general relativity is fundamentally based on

the metric concept [50].

The main scope of this thesis is now to investigate what can be said about general tensorial

backgrounds given by a tensor field G. We want to find out how they are restricted in principle

independently of their physical motivation. This will be done by investigating a tensorial test

matter field coupled to the tensorial structure G. Notably, this is exactly how Einstein was led to
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2 CHAPTER 1. INTRODUCTION

Lorentzian geometry in [51] where the test matter field theory he was considering was Maxwell

electrodynamics. In this thesis, we will start only from the fundamental physical requirement

that the corresponding field theory be predictive and that there be a well-defined notion of

observers and positive energy. From that we will find that there are four conditions that must

be fulfilled by every tensorial background in order to be a viable spacetime structure which will

then be called a tensorial spacetime structure.

These conditions heavily restrict possible modifications from the class of Lorentzian spacetimes.

More precisely, the central result we will obtain in this thesis is that a tensorial spacetime

structure G must give rise to a cotangent bundle function P that is a reduced, hyperbolic, time-

orientable and energy-distinguishing homogeneous polynomial in each fiber. The first chapter

of this thesis will define and justify these conditions. They will all have their essential basis

in the application of well-known results from the theory of partial differential equations, real

algebraic geometry and convex analysis, to questions one considers in classical physics like the

aforementioned initial data problem and the definition of the kinematics and dynamics of massless

and massive particles. In particular, we will see that the conditions we find are sufficient to

define dispersion relations and actions for massless and massive particles and duality theories

between momenta and velocities for massless and massive particles, generalizing those known

from Lorentzian spacetimes. Furthermore, we will be able to define observer frames and inertial,

non-rotating laboratories. Such notions would be necessary to interpret spacetime objects (like

the electromagnetic field strength) in terms of quantities that can be measured in laboratories

(in the case of the field strength, the electric and magnetic field).

As remarked above, the restriction to Lorentzian spacetimes also restricts the type of matter

fields that can be considered. Hence, another part of this thesis will deal with the question of

which matter fields can be considered on general tensorial spacetimes. In particular, we will

investigate massive matter fields that couple directly to the cotangent bundle function P . This

will be done, however, for the case of a flat spacetime (a notion that will be clarified in Chapter

4). In that case, it will prove possible to define generalizations of the Klein-Gordon and Dirac

fields. The Dirac field is of particular interest for establishing full quantum electrodynamics on

general tensorial spacetimes.

However, classical matter field theory on general tensorial spacetimes is only a first step towards

a total liberation of modern physics from the Lorentzian metric. First, we need a prescription

for how to quantize matter fields and second, we need a dynamical theory for the spacetime

itself. The first point is approached in the second part of this thesis and the second point was

investigated in [52] where the authors derived a system of linear partial differential equations that

must be fulfilled by the constraints governing the dynamics of the geometry. It is particularly

interesting that - following the arguments of [52] - in a Lorentzian spacetime we would inevitably

arrive at the Einsteinian theory of gravity. This was already obtained much earlier in [53] using

the approach that was generalized in [52] for general tensorial spacetimes.
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In the second part of this thesis, I will introduce a background-independent quantum field the-

ory approach called general boundary formulation (GBF). We will obtain that the geometric

quantization scheme used for the GBF can be also used to quantize scalar fields on tensorial

spacetimes in a very systematic way if canonical commutation relations are assumed to hold.

The presentation of this application will be the last part of this thesis. It will be used to draw

conclusions about the quantization of massive matter fields on tensorial spacetimes.

The GBF was developed in [54–72] because of the necessity in non-perturbative quantum gravity

to overcome the conceptual restrictions imposed by the metric [54, 68, 73]: In standard quantum

theory, one needs a 3 + 1-split of the spacetime which can only be defined from the background

metric. If the metric itself is quantized non-perturbatively, there is no background metric from

which one could define the spacetime split.

Instead, the GBF gives a true generalization of standard quantum field theory that relies neither

on a Lorentzian metric nor on a spacetime split. It is an axiomatic framework that allows one

to formulate quantum field theory on general spacetime regions with general boundaries. In this

sense, it resembles topological quantum field theory [74] by which it was originally inspired [54].

More specifically, the set of axioms assigns algebraic structures to geometrical structures and

ensures the consistency of these assignments.

In particular, in the GBF, we can consider quantum field theories in compact spacetime regions.

This may provide a way to solve the problem of locality in quantum gravity [68] which can

be stated as follows: On Lorentzian spacetimes, quantum field theories are required to be mi-

crocausal which means that spacelike separated measurements can be performed independently.

That enables us to consider measurements locally, i.e., without considering spacelike separated

parts of the Lorentzian spacetime. Again, this definition of locality hinges on the existence of a

Lorentzian metric defining the causal structure of the Lorentzian spacetime. As stated above,

there is no such background metric if the metric is meant to be quantized non-perturbatively.

The central algebraic structures of the GBF are associated with the boundary of the region under

consideration which earns the GBF its name together with the fact that general boundaries can

be considered. This fixation on the boundary resembles that of the holographic principle, and

the GBF might be seen as a particular realization of this principle [54, 68].

One central element of the GBF is a generalization of the standard notion of transition amplitude.

As in the standard formulation, probabilities for physical processes can be derived from this

amplitude. The basis for the corresponding probability interpretation which does not rely on a

notion of time is based on the generalization of the Born rule [57, 73]. It is argued in [68] that

this solves - to some extent - the measurement problem of quantum gravity [73].

Although the GBF does not rely on a notion of spacetime metric, it can be applied to cases in

which such a metric is present, like for example quantum field theories on a fixed Lorentzian

spacetime. On the one hand, this is a good testing ground for and gives structural insight into

the GBF. On the other hand, it makes it possible to investigate a much wider class of setups then
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just spacelike initial and final data hypersurfaces like in the standard formulation of quantum

field theory. In this context, the main scope of the GBF research is the investigation of quantum

field theories on compact spacetime regions, especially, those with just one connected boundary

having spacelike as well as timelike parts. Another class of regions that can be considered only

in the GBF are those with timelike boundaries which we will consider also in this thesis. I would

like to emphasize that neither compact spacetime regions nor those with timelike boundaries

can be treated in the standard formulation of QFT. Hence, the GBF offers a completely new

perspective not only on quantum gravity but also on the well-established quantum theory of

matter fields.

In recent years, the GBF was applied to a variety of problems and various results have been

obtained [58, 65–72]. In particular, the crossing symmetry of the S-matrix of perturbative quan-

tum field theory is a general property of quantum field theories in the GBF. In [71] this result

was explicitly obtained employing a certain spacetime region of a Lorentzian spacetime with a

timelike boundary called a hypercylinder because in a particular frame it consists of the same

compact ball in every time slice and is translationally symmetric in the timelike direction.

The GBF was also applied to anti-deSitter space. There, no spatially asymptotic region can be

defined which obstructs the definition of an S-matrix in the standard formulation of quantum

field theory. However, the definition of temporal asymptotic regions within the GBF made it

possible to provide meaningful and rigorous definitions for in- and out-states and the S-matrix

that also work in anti-deSitter space [65]. For this purpose, again, a hypercylinder region was

employed. Using the same techniques, it should also be possible to construct a quantum field

theory for a stationary black hole spacetime like that described by the Schwarzschild or more

generally the Kerr metric. That will be part of a new project.

There exist two different mathematical frameworks for the GBF called representations: The

first representation called the Schrödinger representation was proposed in [54–56]. The second

representation is called holomorphic representation and was established based on a mathematical

rigorous framework for scalar fields called geometric quantization for linear field theories in [59]

and affine field theories in [63]. In [60], Oeckl showed that the amplitudes derived with the two

representations coincide, and thus the decision to use one or the other depends only on their

respective technical advantages for particular applications. In this thesis we will only present the

holomorphic representation.

Furthermore, three different quantization prescriptions for observables in the GBF have been

explored so far: one is the Feynman quantization prescription which is a mathematical rigorous

version of the path integral quantization of observables [61], the second is the Berezin-Toeplitz

quantization prescription and the third is the normal ordering prescription [64]. Among them,

the Feynman quantization prescription is exceptional since it is used in standard quantum field

theory leading to results coinciding with experimental observations. We will find the same in

an application of the GBF we will present as an example in Section 6. Furthermore, in contrast

to the other quantization prescriptions, the Feynman quantization prescription fulfills certain
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identities when several spacetime regions are combined [61]. We will have the pleasure of using

some of the results from [61] in this thesis. For the sake of completeness, let us mention that

beside all the results concerning quantum scalar field theory, the GBF was applied to fermionic

field theories in [62] and to two-dimensional Yang-Mills theories in [58] where also regions with

corners were considered.

In [75], Frank Hellmann, Ralf Banisch and I established an Unruh-DeWitt detector model in the

framework of the GBF and used it to gain insight into the structure of the GBF. In particular, we

were able to generalize the notion of initial and final states to a notion of incoming and outgoing

states that is general enough to apply to spacetime regions with timelike hypersurfaces. We

showed for specific examples that, using this interpretation, the response of the Unruh-DeWitt

detector can be used to fix the vacuum state on timelike hypersurfaces.

In this thesis we will quantize of a massive scalar field in Rindler space within the GBF framework

and propose an analysis of the Unruh effect from the GBF perspective. Let us remark that the

Unruh effect is defined in the literature as “the equivalence between the Minkowski vacuum and

a thermal bath of Rindler particles” [76]. This result is sometimes obtained in a mathematically

rather sloppy way by expressing the vacuum state in Minkowski space in terms of two sets of

field modes where the elements of one of them are vanishing outside of the Rindler wedge of

Minkowski space (Rindler space embedded in Minkowski space) and the elements of the other

are vanishing exactly on the Rindler wedge. The degrees of freedom corresponding to modes

vanishing on the Rindler wedge are then traced out from the density matrix corresponding to

the Minkowski vacuum, and the resulting density matrix is shown to be equivalent to a thermal

state in Rindler space [76–82]. One point of critique is that in this derivation not all modes

that decompose the field in Minkowski space are considered; there is always at least one mode

that does not fit into the sets described above. It is argued in [83–87] that neglecting this mode

corresponds to an additional boundary condition. This critique was, however, addressed in [88],

and a conclusion regarding its validity was never reached. However, another point of critique

comes from the result that the vacuum state of Minkowski space cannot be represented as a

density matrix in the quantum theory on Rindler space [89, 90]. Hence, this derivation of the

Unruh effect can only be approximately correct.

A mathematically more rigorous derivation of the Unruh effect is provided by algebraic quantum

field theory (AQFT) by showing that the Minkowski vacuum state (which is in AQFT a map

from the set of observables to the complex numbers) turns out to satisfy the conditions defining a

thermal state in AQFT on Rindler space when restricted to the algebra of observables defined on

open subsets of the right Rindler wedge of Minkowski space [89, 91]. More specifically, it is shown

in [91] that “,given an arbitrary field (in general, interacting) on a manifold X, the restriction

of the field to a certain open submanifold X(+), whose boundaries are event horizons, satisfies

the Kubo-Martin-Schwinger (KMS) thermal equilibrium conditions”, which additionally delivers

the derivation of the Hawking effect in AQFT. However, it is argued in [90] that this result,



6 CHAPTER 1. INTRODUCTION

although correct in its mathematical form, does not imply the same as the original statement of

the Unruh effect. This is done by doubting the physical content of the KMS thermal equilibrium

conditions. Whether this is a valid argument or not in the GBF, we do not have the tools at

hand to derive the Unruh effect in this generality.

Instead, in this thesis, we will consider a Weyl observable W corresponding to a generic source

term with support in the interior of the right Rindler wedge. In particular, we consider this

observable because every n-point correlation function of the quantum field theory can be derived

from it. Hence, by calculating the corresponding expectation value we obtain the expectation

values for all n-point correlation functions. First, we will calculate the vacuum expectation value

of W when quantized in the Minkowski quantization. Then, we will calculate the expectation

value of the Weyl observable W in a particular thermal state in Rindler quantization. We will

show that when using the Feynman quantization prescription for Weyl observables these expec-

tation values coincide, and when using the Berezin-Toeplitz quantization prescription for Weyl

observables they do not coincide. This suggests that there are some limitations on the applica-

bility of the Berezin-Toeplitz quantization. Beside this, the application to the Unruh effect is of

interest for the GBF since it is a direct application of the quantization of observables, and the

first time thermal states are used in the GBF.

Finally, we will use the background-independent geometric quantization scheme that we will

introduce for the holomorphic representation of the GBF for an example of field quantization

on tensorial spacetimes. For that purpose, we do not need the full generality of the GBF; we

are dealing with initial and final data on Cauchy hypersurfaces. However, the geometric quan-

tization scheme suits perfectly for situations with generalized backgrounds. More specifically,

we will use the geometric quantization scheme to quantize a generalization of the Klein-Gordon

field on a non-metric tensorial spacetime with a dispersion relation of fourth order. That means

in particular that the corresponding field equations will be of fourth order. We will find that

additional solutions not corresponding to classical particles have to be included in order to obtain

a microcausal theory when canonical commutation relations are imposed. We will obtain that

Lorentzian spacetimes are the only tensorial spacetimes on which one can consistently establish

a microcausal, unitary quantum scalar field theory fulfilling canonical commutation relations

(CCRs) such that only classical interpretable particles exist. Including the non-classical modes,

however, leads to mathematical problems and conceptual problems concerning the interpretation

of these modes. Comparing this result to results obtained for the imaginary mass Klein-Gordon

field, we will argue that different inertial observers would see a different content of non-classical

particles in the same state of the field.

The outline of the thesis is the following: In Chapter 2, we start by deriving the fundamental

conditions a generic tensorial spacetime must fulfill and define notions of observers and the

kinematics and dynamics for massless and massive point particles. In Chapter 3, we derive
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general properties of tensorial spacetimes and give two examples of classes tensorial structures.

By applying the identified conditions, we show how these classes must be restricted to lead to

viable spacetime structures. In Chapter 4, we construct non-tensorial massive field theories. In

Chapter 5, we review the GBF framework in detail and in Chapter 6 we apply the GBF to

the Unruh effect. In section 7 we apply the background-independent geometric quantization

framework developed for the GBF to a massive scalar field with a dispersion relation of fourth

order on a tensorial spacetime.



 



Chapter 2

Introduction to tensorial spacetime
geometries

In this chapter we will derive the conditions a general tensorial structure must fulfill in order to

constitute a viable spacetime structure. For that purpose we will deal with the theory of partial

differential equations, algebraic geometry and convex analysis. We will introduce a notion of

observers and introduce the kinematics and dynamics for massless and massive particles on

general tensorial spacetimes. The results presented in this and the subsequent chapters have

already been published in [92].

2.1 Field equations

Let us assume that we are given a differentiable, n-dimensional manifold M and a tensor field

G (“the geometry“) coupling to a tensor field φ (“the matter“). Let us assume further that

the dynamics of the matter field can be encoded in an action S[φ,G]. We want to probe the

tensorial geometry G by the matter field. To this end we have to assume that the field equations

corresponding to the action S[φ,G] are linear. Only then we can consider solutions of arbitrarily

small amplitude and the matter field φ can be seen as test matter. Hence, we assume that

Euler-Lagrange equations corresponding to the action S[φ,G] have the form[
s∑

n=1

QIJ(G)µ1...µn ∂µ1 . . . ∂µn

]
φJ(x) = 0, (2.1)

where the small Greek indices are the indices corresponding to the coordinates and run from

0 to n − 1 and the Q(G) are coefficient matrices and the indices I, J label the collection of

tensor entries of φ. The assumed linearity of the field equations implies that the coefficients

Q[G] depend only on G but not on the field φ.

We impose the obvious condition of predictivity of the field equations (2.1) in the sense that they

possess a well-posed Cauchy problem (or initial data problem) as it was defined by Hadamard

[93], that is:

(a) for suitably chosen initial value surfaces, and consistent initial data, there exist unique

solutions of the field equations (2.1) and

9
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(b) the solutions depend continuously on the initial data.

As will be made clear in the following sections these conditions translate into a necessary condition

on the cotangent bundle function P : T ∗M→ R defined by

P (q) := ρ(G) det
IJ

(QIJ(G)µ1...µsqµ1 . . . qµs) (2.2)

for every covector field q, which on each cotangent space T ∗xM induces the so-called principal

polynomial Px. Note that only the highest order coefficient in (2.1) transforms as a tensor in all

its indices and that only this coefficient is employed in the definition (2.2). The factor ρ(G) is a

scalar density of appropriate weight that must be constructed from the tensor background G to

counter the weight of the determinant in (2.2), such as to make the cotangent bundle function

P indeed a scalar function. Even with the weight fixed in this manner, this leaves ample choice

for the precise form of ρ(G), and only later we will have physical reason to fix this in one way or

another.

If the field theory defined by the field equations in (2.1) possesses gauge symmetries, the de-

terminant in (2.2) will vanish. In that case, one must either fix the gauge or reformulate the

field theory in terms of gauge-independent quantities, identify constraint equations and evolution

equations and calculate P only from the latter [94].

2.2 Hyperbolicity

The above-mentioned condition on P that is necessary for the predictivity of (2.1) is that for all

x ∈ M the principal polynomial Px is hyperbolic. A homogeneous polynomial of degree r, i.e.

Px(λq) = λrPx(q) for all λ ∈ R, is hyperbolic if there exists a covector h ∈ T ∗xM with Px(h) 6= 0

such that for every momentum q ∈ T ∗xM the equation Px(q + λh) = 0 is only solved for real λ.

The covector h is then called a hyperbolic covector with respect to Px. Due to the homogeneity

of Px, the vanishing set of Px defined as Nx := {q ∈ T ∗xM|Px(q) = 0} is a cone, i.e. every

real positive multiple λq of an element q of Nx is contained in Nx. This leads to a geometrical

reformulation of the algebraic definition of hyperbolicity as the property that there must exist a

covector h such that every line drawn through any q in the direction of h intersects Nx exactly r

times. To illustrate this condition we show some examples in Figure 2.1. The full condition for

the predictivity of the field equations (2.1) is then properly stated in the following theorem:

Theorem 2.2.1. (Theorems 2.1 and 3.1 of [95], and Theorem 1.2.1 of [96]) Assume that the

Cauchy problem for the field equations (2.1) is well-posed in a region of spacetime. Then the

principal symbol P defines a homogeneous hyperbolic polynomial Px at every point x of the con-

sidered region. More precisely,

Px : T ∗xM → R , q 7→ Px(q) = P (x, q) (2.3)

must be a homogeneous hyperbolic polynomial. Moreover, suitable initial value surfaces must

have co-normals which are hyperbolic with respect to Px.
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cotangent space cotangent space

CC

Figure 2.1: The vanishing set Nx of a homogeneous, hyperbolic polynomial Px of degree r is a
cone and we can find h such that every line drawn through any q in the direction of h intersects
Nx exactly r times. Here, we see the vanishing sets of a second-degree and a fourth-degree
polynomial as well as one of their hyperbolicity cones C(Px, h), respectively. It is of particular
interest that the vanishing set of a hyperbolic polynomial always consists of hypersurfaces of
dimension n− 1 which we will show later in Lemma 2.3.1.

Thus our physical requirement of predictivity translates into the following mathematical condi-

tion:

Condition 1 (Hyperbolicity): We require the principal symbol P of the field equations (2.1)

to give rise to a hyperbolic polynomial Px in every cotangent space T ∗xM.

An interesting example for a class of hyperbolic polynomials are the polynomials Px(q) = gµνx qµqν

induced by the inverse g−1 of a Lorentzian metric g on a four dimensional manifold M. By

choosing an appropriate basis εµ in T ∗xM such that g−1
x (εµ, εν) = diag(1,−1,−1,−1) (which

is always possible for a Lorentzian metric) we find that Px(q) = q̃2
0 − q̃2

1 − q̃2
2 − q̃2

3 where

q̃ν = qµε
µ
ν . Choosing h such that h̃ = (1, 0, 0, 0) we find that for an arbitrary q we have

Px(q + λh) = (q̃0 + λ)2 − q̃2
1 − q̃2

2 − q̃2
3 = 0 has the two real solutions λ1,2 =

√
q̃2

1 + q̃2
2 + q̃2

3 − q̃0.

So that the Px are recognized to be hyperbolic, indeed.

It is of particular interest that if there exists one hyperbolic covector h for the homogeneous

polynomial Px, then there exists a whole convex cone of hyperbolic covectors C(Px, h). Convexity

convexity means that for every h1 and h2 in C(Px, h) and every 0 ≤ λ ≤ 1, the whole line

λh1 + (1−λ)h2 lies in C(Px, h). The cone C(Px, h) is called a hyperbolicity cone, is bounded by

elements of Nx and can be specified as the set of all q ∈ T ∗xM such that for all λ ≥ 0 we have

Px(q + λh) 6= 0.

A polynomial Px = P1 . . . Pl is hyperbolic with respect to some covector h if and only if all of

its factors are hyperbolic with respect to h. Moreover, the hyperbolicity cone is C(Px, h) =
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C(P1, h) ∩ · · · ∩ C(Pl, h) 1.

In some circumstances it will be more convenient to make statements about hyperbolicity and

hyperbolicity cones for every cotangent space at the same time. Hence, we say in the following

that the principal symbol P is hyperbolic if every Px is hyperbolic and there exists a smooth

covector field h such that Px is hyperbolic with respect to h(x). If P is smooth, we have a smooth

distribution of hyperbolicity cones C(Px, h). We call this distribution C(P, h).

The above definition of the hyperbolicity cone is somewhat implicit. A constructive definition is

afforded by the following theorem:

Theorem 2.2.2. (Theorem 5.3 of [98]) Let the polynomial Px be hyperbolic with respect to h and

Px(h) > 0. Then a generic covector v lies in the hyperbolicity cone C(Px, h) if and only if it

fulfills the r = degP inequalities

detHi(v, h) > 0 for all i = 1, . . . , r , (2.4)

where the bilinear maps H1, H2, . . . ,Hr are constructed as

Hi(v, h) =



h1 h3 h5 . . . h2i−1

h0 h2 h4 . . . h2i−2

0 h1 h3 . . . h2i−3

0 h0 h2 . . . h2i−4
...

...
...

...
...

0 0 0 . . . hi


i×i

where hj is set to 0 for j > i (2.5)

from the coefficients of the expansion

Px(v + λh) = h0(v, h)λr + h1(v, h)λr−1 + · · ·+ hr(v, h) . (2.6)

For any given h the condition that Px(h) > 0 can be always fulfilled by multiplying Px with −1

if necessary.

We are now ready to identify the next condition a tensorial spacetime has to satisfy. The alert

reader might have noticed that the vanishing set Nx for the polynomial Px in the Lorentzian

metric example above is exactly the set of lightlike momenta. It turns out that this is the correct

interpretation for the distribution of vanishing sets N for every hyperbolic principal symbol P ,

as we will learn from considering the geometrical optical limit.

2.3 The geometric optical limit

We will show in the following that the cotangent bundle function P provides the dispersion

relation obeyed by wavelike solutions of the field Equation (2.1) in the geometric optical limit.

To see this, consider solutions taking the form of a formal series

φN (x, λ) = ei
S(x)
λ

∞∑
j=0

ϕNj (x)λj , (2.7)

1These and more properties of hyperbolic polynomials and their hyperbolicity cones can be found in [97].
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where φNj (x) is a tuple of functions for each j and S/λ is the phase of the wave-like solution and

considered to be real. The function S(x) is known as the eikonal function in the literature. The

geometrical optical limit is now obtained by considering only small λ, which can be thought of as

the short wavelength limit of the wavelike solutions considered [99–102]. Using the ansatz (2.7)

in the field Equation (2.1), we obtain

ei
S(x)
λ λ−s

QMN (G)µ1···µs∂µ1S(x) · · · ∂µsS(x)ϕN0 (x) +
∞∑
j=1

vMj(x)λj

 = 0 , (2.8)

where each of the vMj(x) terms depends on some of the matrix coefficients Q of the differential

Equation (2.1), on the coefficients φNj (x) of the expansion (2.7) and on the eikonal function

S and its derivatives of lower than the highest order s. For φN to be a solution to the field

equations (2.1), the expression in (2.8) must vanish for every order of λ separately. This leads

to the conclusion that the eikonal function must fulfill the equation

det
MN

(
QMN (G)i1···is(x)∂i1S(x) · · · ∂isS(x)

)
= 0 , (2.9)

which can be written using the principal polynomial at x as

Px(dS) = 0

. This solvability condition is known as the eikonal equation. This is why we identify Nx as the

set of momenta of massless particles.

For the following constructions we need to impose a harmless technical condition:

Condition 2: We require that the polynomials Px induced by the principal symbol P do not

contain repeated factors when written as a product of irreducible polynomials Px = P1 . . . Pl.

We call a polynomial that fulfills this condition reduced. The condition is indeed harmless in the

sense that the vanishing set of an arbitrary power of a polynomial coincides with the vanishing

set of the polynomial; in other words, when canceling repeated factors, we do not lose any

information about the vanishing set. On the other hand, the condition avoids degeneracies that

would occur otherwise. To make this statement clearer, we will show in the following that if Px is

reduced and hyperbolic, the vanishing ideal V(Nx) is generated by Px, where V(Nx) is the set of

all polynomials that vanish on Nx. In other words, every element of V(Nx) can be decomposed as

a product of polynomials containing Px at least once. We can see this as the statement that Px

and Nx contain the same amount of information in the sense of algebraic geometry which is the

mathematical discipline concerned about the vanishing sets of polynomials. To give the proof,

we first need to define the set N smooth
x ⊆ Nx of all massless momenta at which the derivative

DPx(q) := ∂
∂qPx(q) does not vanish. Geometrically, this can be seen as the set of points on the

set Nx with non-vanishing gradient. Second, we need to give and prove two technical lemmas

that we will also need in a later section.
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Lemma 2.3.1. For a reduced, homogeneous, hyperbolic polynomial Px, the set N smooth
x is a dense

subset of the cone Nx of massless momenta.

Proof. Since the set of massless momenta Nx is generated from a single polynomial P , it fol-

lows from Definition 3.3.4 of [103] that the set of singular points is Sing(Nx) = Nx \ N smooth
x .

But then dim Sing(Nx) < dimNx = dimM − 1 = n − 1, where the inequality is Proposi-

tion 3.3.14 of [103] and the equality follows from the hyperbolicity of P [104]. Thus we know

that the singular set is at most of dimension n − 2. Further, we know from the first remark

in 3.4.7 of [105] that Sing(Nx), being a real algebraic set, can be expressed as a finite union

of analytic semi-algebraic manifolds Si and that every such manifold has a finite number of

connected components. From the propositions 2.8.5 and 2.8.14 of [103] we thus obtain that

dim Sing(Nx) = max(dim(Si)) = max(d(Si)), where d(Ai) is the topological dimension of the

semi-algebraic submanifold Si ⊂ T ∗xM. Since dim Sing(Nx) ≤ n− 2 we conclude that Sing(Nx)

consists of only finitely many sub-manifolds of Rn of topological dimension less than or equal to

n− 2. Thus its complement N smooth
x = Nx \ Sing(Nx) is dense in Nx.

Lemma 2.3.2. If Px is a reduced homogeneous hyperbolic polynomial with hyperbolicity cone Cx at

some point x ∈M, then for all covectors s ∈ T ∗xM\closure(Cx) there exists a massless covector

r on the boundary ∂Cx of the hyperbolicity cone such that s(DPx(r)) < 0.

Proof. It is clear that if y ∈ Cx and s 6∈ closure(Cx), the line y + λs intersects the boundary

∂Cx at some r0 = y + λ0s for some positive λ0. Thus Px(r0) = 0 and, since Px(Cx) > 0, we

have Px(r0 − εs) > 0 for sufficiently small positive ε. Now we must distinguish two cases: First

assume that Px(r0 + εs) < 0, from which it follows that d
dεPx(r0 + εs)|ε=0 = s(DPx(r0)) < 0,

which proves the lemma with r := r0; Second, assume that Px(r0 + εs) > 0 which is equivalent

to d
dεPx(r0 + εs)|ε=0 = s(DPx(r0)) = 0 which in turn holds if and only if DPx(r0) = 0 (to see the

latter equivalence assume that, to the contrary, s(DPx(r0)) = 0 and DPx(r0) 6= 0; this implies

that s must be tangential to ∂Cx at r0, but since y lies in Cx and Cx is a convex cone y + λs

could then not intersect ∂Cx at r0, which we assumed, however). So to prove the lemma in this

second case, we need to construct another r′0 ∈ ∂Cx that satisfies the condition s(DPx(r′0)) < 0.

Now since the First Lemma guarantees that the set N smooth
x , on which DPx is non-zero, lies

dense in Nx, we can find in every open neighborhood U around r0 a vector r
′
0 ∈ ∂Cx such that

DPx(r
′
0) 6= 0. We define z := r

′
0 − r0 and y′ := y + z. Since Cx is an open cone, y

′
lies in Cx if

we choose a small enough neighborhood, and the line y′ + λs intersects ∂Cx at r
′
0. Finally since

r
′
0 ∈ ∂Cx we know that Px(r

′
0) = 0 and Px(r

′
0− εs) > 0. We conclude that s(DPx(r

′
0)) < 0. This

proves the Second Lemma with r := r
′
0.

Now we are ready for our problem of algebraic geometry. Recall that an ideal I ⊂ R in a ring R

is a subset that is closed under addition and under multiplication with an arbitrary ring element.

In our case, R is the ring of real polynomials on T ∗xM in dimM = n real variables. Now on the
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one hand, we can consider the situation where we are given an ideal I. Then, we can define the

vanishing set V(I) as the set of cotangent vectors that are common zeros to all polynomials in I.

On the other hand, we can start from a subset S of cotangent space and consider the set I(S) of

all polynomials in R that vanish on all members of that set S. Now, it can be shown that I(S)

is an ideal in the ring of polynomials on cotangent space, and that one always has the inclusion

I(V(I)) ⊇ I . (2.10)

The question under which conditions the left and right hand sides are equal is studied in the

Nullstellensätze of algebraic geometry. While this question is relatively straightforward for poly-

nomials over algebraically closed fields [106] like the complex numbers, for the real numbers

underlying our study here, we need to apply some theorems that were originally developed in

order to solve Hilbert’s seventeenth problem2. The central result for our purposes is

Proposition 2.3.3. Let Px be a reduced homogeneous hyperbolic polynomial on T ∗xM, then the

following equality holds:

I(Nx) = 〈Px〉 . (2.11)

Proof. From Lemma 2.3.1, we know that N smooth
x 6= ∅ (as follows from the hyperbolicity of Px).

Here 〈Px〉 denotes the ideal containing all polynomials that have Px as a factor. Drawing on the

said results from real algebraic geometry, this is seen as follows. Let Px i be the ith irreducible

factor of Px. Then there exists a q ∈ N smooth(Px i) so that Corollary 2.9 of [107] shows that Px i

generates a real ideal, i.e., I(N (Px i)) = 〈Px i〉. According to corollary 2.8 of [107], the reduced

polynomial Px thus also generates a real ideal since it does not contain repeated factors. Finally,

Theorem 4.5.1 of [103] yields the claim.

That the equality in Equation (2.10) holds for hyperbolic polynomials will be of importance when

we try to find the vector duals of massless momenta. This will be part of the insight gained in

the next section.

2.4 Massless particles

We showed in the preceding section that the principal symbol P provides the dispersion relation

for massless particles as

Px(q) = 0 (2.12)

it satisfies the conditions we identified: it must be a hyperbolic and reduced polynomial. That

puts us now into the position to define the dynamics of free, massless point particles as given by

the Helmholtz action

I0[x, q, λ] =

∫
dτ [qαẋ

α + λP (x, q)] . (2.13)

2Hilbert’s seventeenth problem is one of the 23 problems set out by Hilbert in 1900. It poses the question
whether any multivariate polynomial that takes only non-negative values over the reals can be represented as a
sum of squares of rational functions.
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For that action, we have chosen the Hamiltonian λP (x, q) because it is a pure constraint which

ensures via the Lagrange multiplier λ that the momenta q lie in the vanishing set Nx at every

point x of the trajectory of a massless particle. To obtain from (2.13) a functional depending on

the trajectory x and not on the momentum q we have to invert the relation

ẋ = λDPx(q) (2.14)

which we obtain by varying (2.13) with respect to the momentum q for all q ∈ N smooth
x . We get

rid of the Lagrange multiplier λ by reformulating (2.14) as

[DPx(q)] = [ẋ] , (2.15)

where [X] denotes the projective equivalence class of all vectors collinear with the vector X.

Since Px is homogeneous of degree r, the gradient DPx is homogeneous of degree r − 1 and the

function [DPx] : [N smooth
x ] → [DPx(N smooth

x )] ⊂ PTxM mapping [q] to [DPx(q)] is well defined.

[DPx] will be denoted in the following as the Gauss map.

Having gotten rid of the Lagrange multiplier by rewriting Equation (2.14) in projective space,

carries the advantage of having at our disposal mathematical results about the inverse of the

Gauss map in algebraic geometry. It turns out that for every reduced, hyperbolic polynomial Px

there exists a homogeneous polynomial P#
x called the dual polynomial such that the image of

N smooth
x under the Gauss map is contained in the vanishing set N#

x of P#
x . In other words, the

relation

P#
x (DPx(q)) = 0 (2.16)

holds for all q ∈ Nx. It will turn out that if Px fulfills the additional conditions we will introduce

in Section 2.5, the dual polynomial P#
x is determined by (2.16) up to a polynomial factor. This

factor can be removed up to a constant by defining the dual P#
x as a polynomial of minimal

degree fulfilling (2.16).

In this section, it remains to show that there exists a polynomial P#
x that fulfills the condition

(2.16) for any reduced, hyperbolic Px. The proof relies on a branch of algebraic geometry known

as elimination theory and is constructive. In addition, one sees that the Gauss dual can in

principle be calculated algebraically3. We start by reformulating the condition in (2.16) as the

statement that we are searching for polynomial conditions which a vector X must satisfy such

that the polynomials

Px(k), Xi1 −DPx(k)i1 , . . . , Xid −DPx(k)id (2.17)

all vanish for some k. If the real Nullstellensatz holds, Proposition 11.10 and the Elimination

Theorem in [106] tell us that X must lie in the vanishing set of a uniquely specified ideal I of the

ring of real polynomials over TxM. The Elimination Theorem in [106] tells us additionally how

to find the generators of I, that is the set of polynomials {P1, . . . , Pl} such that every element Q

3The respective algorithm is implemented in Mathematica but exhausts the capabilities of common office
hardware if applied to higher degree polynomials in several variables.
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of I can be written as Q =
∑

iQiPi where the Qi are polynomials4. In particular, the vanishing

set of I is equivalently defined as the maximal set on which all Pi vanish. Then, we obtain P#
x as

the sum of the squares of the generators as P#
x = P 2

1 + · · ·+P 2
l since P 2

1 + · · ·+P 2
l vanishes if and

only if each of the Pi vanishes. Although the construction of a P#
x is in principle possible via the

elimination theory it is quite a difficult problem in practice. In particular, the problem of finding

a P#
x is reduced tremendously if Px factorizes as Px = P1 . . . Pl. In that case we define the dual

as P#
x = P#

1 . . . P#
l where for every i the polynomial P#

i is a dual to Pi. This definition fulfills

the condition (2.16) which can be seen easily from the product rule. However, we will see later

an example in which dual polynomials to generically irreducible P can be constructed explicitly

from the same background tensor field G from which P was constructed using knowledge about

the tensor field.

Let us now return to the Gauss map

[DPx] : [N smooth
x ]→ [N#

x ] , [q] 7→ [DPx(q)] . (2.18)

The inverse is obtained as the map

[DP#
x ] : [N#smooth

x ]→ [Nx] , [v] 7→ [DP#
x (v)] , (2.19)

since we then have for null covectors k ∈ N smooth
x that

[DP#
x ]([DPx]([q])) = [q] if det(DDPx)(k) 6= 0 , (2.20)

so that the dual Gauss map [DP#] acts as the inverse of the Gauss map on the images of

all covectors q satisfying the above determinantal non-degeneracy condition. That the identity

(2.16) holds can be seen by re-writing it as

P#
x (DPx(q)) = Qx(q)Px(q) (2.21)

for all q ∈ T ∗xM. By differentiating with respect to q and applying the chain rule and then Euler’s

Theorem5 on the right hand side of (2.21) we find for every covector fulfilling the non-degeneracy

condition in (2.20) that

DP#
x (DPx(q)) =

Qx(q)

r − 1
q . (2.22)

The projection of (2.22) gives then Equation (2.20). Finally, we can invert the relation (2.15)

between the trajectory tangent and the momentum we derived from the action in (2.13) above

as

q = µDP#
x (ẋ) (2.23)

where the factor µ covers the fact that we inverted the relation only in projective space without

taking λ into account. As in the case of the hyperbolicity cones, we define the cotangent bundle

4Explicitly this can be constructed using Buchberger’s algorithm and Gröbner bases (see [106] for an exhaustive
introduction).

5Euler’s Theorem tells us the simple fact that for any function f that is homogeneous of degree deg f , the
relation Df(v)v = (deg f)f(v) holds for any v in the domain of f .
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function P as the tangent bundle function P# given as a smooth distribution of dual polynomials

such that at every x ∈M the polynomial P#
x is a dual to Px. We call P# the Gauss dual. The

action (2.13) can then be re-written using P# as

I0[x, µ] =

∫
dτµP#

x (ẋ) , (2.24)

where the Lagrange multiplier µ serves two purposes. On the one hand, it ensures that ẋ lies

in the dual vanishing set N#
x , and on the other hand, it covers the indeterminacy of the dual

polynomial P#
x . With (2.15) and (2.23) we can interpret the Gauss map [DPx] and its inverse

[DP#
x ] as associating particle momenta in N smooth

x with particle velocities in N#smooth
x and vice

versa. The tangent bundle function P#, which will be called the Gauss dual of P in the following,

is hence interpreted as the tangent space geometry seen by massless particles. In the next section,

this will lead us to our fourth requirement.

2.5 Time-orientability and energy-distinguishability

Let us summarize shortly which conditions we imposed on the tangent bundle function P and

thus on the underlying geometric tensor G so far. First, we required that P can be identified as

the principal symbol of a linear partial differential equation describing matter which turned out

to be equivalent to the requirement that P give rise to a homogeneous polynomial Px in every

cotangent space. The linearity corresponded to the idea that one uses test matter to probe the

geometry. Second, we required all the Px to be hyperbolic, which was a necessary condition for

the linear partial differential equations to be predictive in the sense of giving rise to a well-posed

initial data problem. Hence, the first two conditions, which were already found a long time ago

in [104], are inevitable from a physical perspective. Third, we required the Px to be reduced,

which meant that we took out multiple factors. This was a rather mathematical condition that

ensured the applicability of theorems from algebraic geometry that we used later.

The conditions we will impose in the following are different in spirit. They cannot be deduced

step-by-step from fundamental conditions. Their only justification is that at the end they turn

out to lead to a consistent framework that includes observers associated with stable massive

particles that can interpret spacetime using geometry. We call this property interpretability.

We start with the requirement of time-orientability: We want to have a definition of time orien-

tation for which we need as a minimal condition that at least locally we can tell when a vector

points forward in time. For this purpose, we want to be able to pick a smooth distribution C# of

hyperbolicity cones of P# which we call the observers cones. Possible observer trajectories in our

framework will then be only those curves γ : [τ1, τ2] →M that have tangents lying in C#
γ(τ) for

all τ ∈ [τ1, τ2]. Vector fields in C# will be called timelike forward-pointing. The distribution C#

can of course be equally defined by giving a smooth vector field T such that T (x) is hyperbolic

with respect to P#
x at every point x ∈M, i.e., for all vector fields V the polynomial equation

P#
x (V (x) + λT (x)) = 0 (2.25)
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has only real solutions λ. This is precisely the way a time orientation is specified in the special

case of Lorentzian geometry (where P (q) = g−1(q, q) and P (v, v) = g(v, v), see Section 3.4).

A necessary condition for the existence of a C# is of course the hyperbolicity of every P#
x . So

we impose the following condition:

Condition 3 (Time orientability): We require that the Gauss dual P# to P induces a

hyperbolic, reduced, homogeneous polynomial P#
x in every tangent space TxM .

That the hyperbolicity of Px does not already imply the hyperbolicity of P#
x can be seen from

the counterexample in Figure 2.2.

cotangent space tangent space

Figure 2.2: Example of a hyperbolic polynomial with non-hyperbolic dual polynomial; shown
are the respective vanishing sets.

Furthermore, if P#
x is reduced and hyperbolic, we find - recalling the result in 2.3.3 - that the

principal ideal 〈P#
x 〉 is in one-to-one correspondence with the dual vanishing set N#

x to every

Nx which was defined as the algebraic closure of the image of N smooth
x under the Gauss map.

In that case, P#
x is uniquely specified up to a polynomial factor by the condition in Equation

(2.16) where the polynomial factor can be removed up to a constant by taking a polynomial of

minimal degree fulfilling (2.16) for P#
x .

Let us assume in the following that we have picked an observer cone C#. We find that those

momenta q at a point x whose energy is positive from every observer’s point of view lie in the

cone

(C#
x )⊥ = {p ∈ T ∗xM| p(v) > 0 for all v ∈ C#

x } . (2.26)

The cone −(C#
x )⊥ then obviously defines the set of momenta whose energy is negative from the

perspective of every observer in C#. If the polynomial Px is of the product form Px = P1 . . . Pl,

we find that the positive energy cone is simply the sum of the positive energy cones coming from

the duals of the factors Pi [108], i.e.

(C#
x )⊥ = (C#

1;x)⊥ + · · ·+ (C#
l;x)⊥ , (2.27)

where the sum of two convex sets is just the set of all sums of any two elements of the two sets.
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Having specified an observer-independent notion of positive and negative energy, we want these

notions to distinguish, in particular, massless momenta of positive and negative energy. More

precisely, we impose the condition:

Condition 4 (Energy distinguishability): We require that we can pick a hyperbolicity

cone C# for the dual P# to P such that Nx \ {0} ⊂ (C#
x )⊥ ∪ −(C#

x )⊥ at every x ∈M.

Then we can immediately prove the following important result:

Proposition 2.5.1. For hyperbolic, time-orientable and energy-distinguishable geometries, the

set of massless momenta Nx cannot contain any null planes in spacetime dimensions d ≥ 3,

which in turn implies that the degree of P cannot be odd.

(C   )#
positive energies

massive momenta
C

observers
#C

cotangent space tangent space

Figure 2.3: A hyperbolic, time-orientable and energy-distinguishing polynomial Px.

Proof. First, we prove that the hyperbolicity and time-orientability of Px implies that

closure(C#⊥
x ) ∩ −closure(C#⊥

x ) = {0} . (2.28)

Let k0 be such that k0 ∈ closure(C#⊥
x ) and k0 ∈ −closure(C#⊥

x ). It follows from the definition

of the dual cone that the following inequalities are true for all x ∈ C#
x : x.k0 ≥ 0 and x.k0 ≤ 0.

If this would be true, the hyperbolicity cone C#
x had to be a plane or a subset of a plane. That

would contradict the property of C#
x being open. Second, suppose that the vanishing set Nx

contains a plane. From closure(C#⊥
x ) ∩ −closure(C#⊥

x ) = {0} it follows that C#⊥
x \ {0} is a

proper subset of a half-space. A proper subset of a half-space cannot contain any complete

plane through the origin. Hence the existence of a null plane of Px would obstruct the energy-

distinguishing property. Third, this fact immediately restricts us to cotangent bundle functions

P of even degree. For suppose degP was odd. Then on the one hand, we would have an odd

number of null sheets. On the other hand, the homogeneity of P implies that null sheets in a

cotangent space come in pairs, of which one partner is the point reflection of the other. Together
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this implies that we would have at least one null hyperplane.

Furthermore, we can prove for time-orientable and energy-distinguishing hyperbolic polynomial

geometries that Px fulfills a property called completeness that will be crucial in the theory of

massive particles and observers in the next section. A hyperbolic polynomial Px is called complete

if the lineality space

L(Px) = {a ∈ T ∗xM | for all y ∈ T ∗xM and λ ∈ R : Px(y + λa) = Px(y)} (2.29)

only contains the zero covector. In other words, in order to be complete, Px must depend on all

covector components in any chosen basis. Geometrically, completeness can be read off from the

closure of the hyperbolicity cones since it is equivalent to [109]

closure(C(Px, h)) ∩ closure(C(Px,−h)) = {0} . (2.30)

That completeness is already implied by the energy-distinguishing condition can be easily seen

as follows: Picking up the argument given at the start of this section, we know that

closure(C#
x
⊥) ∩ −closure(C#

x
⊥) ⊇ closure(Cx) ∩ −closure(Cx) . (2.31)

Thus, if the right hand side differs from {0} (meaning that Px is incomplete), the left hand side

will contain non-zero covectors, too (showing that Px is not energy-distinguishing). Because

of the inclusion, this only holds in this direction. We conclude that the energy-distinguishing

property already implies completeness.

From Px being complete, we have the validity of some inequalities similar to those known from

inner product spaces. First, we define the polarization tensor P
µ1,...,µdegP
x such that its coefficients

are those of the polynomial Px. Second, we consider one particular hyperbolicity cone Cx and

assume that Px is positive on this cone, i.e., for all h ∈ Cx we have Px(h) > 0; Due to the

definition of the hyperbolicity cone Px(h) 6= 0 for all h ∈ Cx and we can always achieve Px(h) > 0

by multiplying Px with −1 if necessary. Then, if Px is complete we have that

1. the reverse triangle inequality

P 1/degP
x (q1 + q2) ≥ P 1/ degP

x (q1) + P 1/degP
x (q2) (2.32)

holds for all q1 and q2 in the same hyperbolicity cone Cx and

2. a reverse Cauchy-Schwarz inequality

P
µ1,...,µdegP
x q1,µ1 . . . qdegP,µdegP

≥ Px(q1)1/degP · · ·Px(qdegP )1/ degP (2.33)

is satisfied for all q1, . . . , qdegP in the same hyperbolicity cone Cx, where equality holds if

and only if all arguments qi are proportional to each other.
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2.6 Massive point particles

Before we develop the kinematics of massive point particles in this framework, we have to pick

a particular hyperbolicity cone C and call it the hyperbolicity cone in what follows. For a bi-

hyperbolic and energy-distinguishing dispersion relation, there is always a hyperbolicity cone in

cotangent space that is of positive energy with respect to a chosen time orientation C#. For

let C̃x be some hyperbolicity cone of Px, whose boundary ∂C̃x we know to be a connected

set of null covectors. Now on the one hand, the complete vanishing set of Px is contained in

(C̃#
x )⊥ ∪ −(C̃#

x )⊥ due to the energy-distinguishing property. On the other hand, we have that

(2.28) holds. Hence either C̃x or −C̃x is of positive energy. We assume that the hyperbolicity

cone we selected is of positive energy. Since the sign of Px(q) is the same for all q ∈ Cx we

assume furthermore in the following that Px(q) is positive for all q ∈ Cx. Then we define the

massive dispersion relation as the condition

Px(q) = mdegP (2.34)

for some fixed, real positive m, which we call the mass. Here is the point in this framework

where the volume element ρ(G) in the definition of P in (2.2) becomes important. Before, we

were only concerned with the vanishing set, which is of course independent of this factor. But

now, the quotient of two different volume elements ρ(G) and ρ′(G) is a scalar spacetime function

which can be brought to the right hand side of (2.34), thus effectively changing the mass term m.

Thus, the choice of the density ρ can be understood as a choice of conversion of mass densities

from field theory to point masses in particle theory.

The form of the dispersion relation (2.34) has the advantage that the mass shells defined by

different values of m foliate the whole hyperbolicity cone Cx, but at the same time are completely

contained in the latter, i.e. momenta to massive particles are always hyperbolic with respect to

Px. We thus see immediately from the convexity of Cx that a single positive-energy massless

particle cannot decay into positive energy massive particles. From the reverse triangle inequality

(2.32) we see that the decay of a massive particle into two or more massive particles gives rise

to a mass defect as it is known from massive particles in Lorentzian geometry.

Similar to the case of massless particles, we write an action for the massive particles as the

Helmholtz action

I[x, q, λ] =

∫
dτ
[
qaẋ

a − λm lnP (x,
q

m
)
]
, (2.35)

which describes free massive particles since the massive dispersion relation P (x, q) = mdegP is

enforced through variation with respect to λ. We have chosen the specific form of the Lagrange

multiplier term to have at our disposal the theory of Legendre duals on the open convex cones

Cx, see [108]. To be more precise, the function,

fx : Cx → R , fx(q) = − 1

degP
lnPx(q) , (2.36)

called the barrier function, is firstly guaranteed to be strictly convex, i.e., for each λ ∈ [0, 1] we

have fx((1− λ)v+ λw) < (1− λ)fx(v) + λfx(w) for all v, w in the hyperbolicity cone Cx, due to
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the completeness of P [109], which in turn is guaranteed by the energy-distinguishing property,

as we saw in the previous chapter; secondly, near the boundary of the convex set, it behaves such

that for all q ∈ Cx and b ∈ ∂Cx

lim
λ→0+

(Dq−bfx)(b+ λ(q − b)) = 0 , (2.37)

which property is known as essential smoothness in convex analysis. The important point is that

strict convexity and essential smoothness together ensure that the barrier function fx induces an

invertible Legendre map

Lx : Cx → Lx(Cx) , q 7→ −(Dfx)(q) (2.38)

and a Legendre dual function

fLx : Lx(Cx)→ R, fLx (v) = −L−1
x (v)v − fx(L−1

x (v)) , (2.39)

which can be shown, again due to our four conditions, to be a strictly convex and essentially

smooth function on the open convex set Lx(Cx). Note that the two minus signs in (2.39) are

correct, and due to our sign conventions. In fact, the inverse Legendre map is the Legendre map

of the Legendre dual function fL:

−DfLx = L−1
x (v) +DL−1

x (v)v +DL−1
x (v)Dfx(L−1

x (v)) = L−1
x (v) . (2.40)

In other words, the Legendre dual of the Legendre dual (Lx(Cx), fLx ) of (Cx, fx) is again (Cx, fx),

see Theorem 26.5 of [108].

Using the above Legendre theory we are able to invert the relation between particle momentum

and particle velocity ẋ which we obtain by varying with respect to q of the action (2.35) to be

ẋ = (λ degP )Lx(q/m). We find that

q = mL−1
x (ẋ/(λdegP )) , (2.41)

and it becomes clear now why we have chosen the particular form of the Lagrange multiplier

term in the action (2.35): It enables us to use the theory of Legendre transform in the above

straightforward way. We can now rewrite the action (2.35) as

I[x, λ] = −m degP

∫
dτ λfL(ẋ/(λ degP )) = −mdegP

∫
dτ
[
λfLx (ẋ) + λ ln(λdegP )

]
, (2.42)

where for the second equality we used the easily verified scaling property fL(αẋ) = fL(ẋ)− lnα.

From the variation of the action (2.42) with respect to λ, we then obtain that

fL(ẋ) + ln(λ degP ) + 1 = 0 . (2.43)

Using this twice, we have λfLx (ẋ) + λ ln(λ degP )) = −λ = − exp(−fLx (ẋ) − 1)/ degP . Noting

that because of ẋ ∈ Lx(Cx) we also have for q̃ := L−1
x (ẋ) that q̃(ẋ) = 1 and thus fLx (ẋ) =

−1− fx(L−1(ẋ)), and defining the tangent bundle function

P ∗x : Lx(Cx)→ R , P ∗x (v) = Px(L−1
x (v))−1 , (2.44)
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we eliminate λ in (2.42) and finally arrive at the equivalent action

I[x] = m

∫
dτP ∗x (ẋ)1/ degP (2.45)

for a free point particle of positive mass m. While the tangent bundle function P ∗ is generically

non-polynomial, it is elementary to see that it is homogeneous of degree degP , and for later

reference we also show the useful relation

L−1
x (v) =

1

degP

DP ∗x (x, v)

P ∗x (x, v)
. (2.46)

The action (2.45) is reparametrization invariant, as it should be. However, parameterizations for

which P (x, L−1(x, ẋ)) = 1 along the curve are distinguished since they yield the simple relation

ẋ = Lx(q/m) (2.47)

between the free massive particle velocity ẋ and the particle momentum q everywhere along

the trajectory x. This normalization is thus the generalization of the notion of proper time to

hyperbolic polynomial spacetimes. Furthermore, we call the cone Lx(Cx) the cone of massive

particle velocities at the point x and the tangent bundle function P ∗ the Legendre dual of P . We

conclude from the action (2.45) that the tangent bundle function P ∗ represents the spacetime

geometry seen by massive particles. We emphasize that although P ∗ and P#, which represent

the spacetime geometries seen by massive and massless particles respectively, are both certain

duals to P they are generically different functions. P# is polynomial and P ∗ generically not.

In particular, calculating the inverse Legendre map L−1
x , and thus P ∗ explicitly, is very difficult

in concrete examples. Indeed, there are no non-Lorentzian examples in which L−1
x has been

calculated yet. In this sense, the dual geometry (TM, P#, P ∗) is much less straightforward than

(T ∗M,P ).

With the above definition of massive particles, we will now prove that all observers can be

considered to be massive particles, i.e. that C#
x ⊆ Lx(Cx). In the following, we formulate the

result in the form of two lemmas since we will need them in a later section as well:

Lemma 2.6.1. For any reduced hyperbolic homogeneous cotangent bundle function P we have

Lx(Cx) = interior(C⊥x ).

Proof. Since by assumption Px is reduced, hyperbolic and homogeneous, we get from Lemma

2.3.1 and Lemma 2.3.2 the statement: for all p ∈ T ∗xM \ closure(Cx) there exists an r ∈ ∂Cx
such that p.DPx(r) < 0. Since p.DPx(q) is a continuous function of q, we conclude that

for all p ∈ T ∗xM \ closure(Cx) there exists a q ∈ Cx such that p.DPx(q) < 0. That im-

plies that the set Lx(Cx)⊥ is a subset of closure(Cx) \ {0}. Since Lx(Cx) is convex, we get

Lx(Cx) ⊇ (closure(Cx) \ {0})⊥ = interior(C⊥x ). Furthermore, we know that Lx(Cx) ⊆ C⊥x . Since

Lx(Cx) is open it follows that Lx(Cx) = interior(C⊥x ).

Lemma 2.6.2. For any bi-hyperbolic and energy-distinguishing cotangent bundle function P , we

have C#
x ⊆ interior(C⊥x ).
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Proof. At the beginning of this section we argued that there exists a hyperbolicity cone Cx of

Px that lies completely in (C#
x )⊥. From (C#

x )⊥ ⊇ Cx and the fact that C#
x is open, we conclude

that C#
x ⊆ interior(C⊥x ).

This result will lead us in the next section to the definition of observer frames and a candidate

for the definition of parallel transport on tensorial spacetimes. Furthermore, by taking the dual

on the left and right hand sides of the equation in Lemma 2.6.2, we find that Cx ⊆ (C#
x )⊥, which

tells us that all massive momenta are of positive energy as we indeed claimed before in Section

2.5, although the definition of energy-distinguishability was only formulated for the momenta of

massless particles.

To summarize, we have defined tensorial spacetimes as given by tensor fields G coupling to matter

such that the resulting cotangent bundle function P defined in Equation (2.2) induces a homoge-

neous, hyperbolic, reduced polynomial Px in every cotangent space T ∗xM and additionally fulfills

the properties of time-orientability and energy-distinguishability. The first three properties were

derived from first principles, and the other three were shown to lead to a consistent framework

containing observers that can interpret spacetime in geometrical terms coinciding with their no-

tion of positive and negative energy. In particular, we identified the two generically different

tangent bundle functions P# and P ∗ describing the spacetime geometry seen by massless and

massive particles respectively. Additionally, we constructed the Gauss and the Legendre maps

to map massless and massive particles to the corresponding velocities and we showed that these

duality maps are mathematically well-defined and invertible. In the next chapter we will use

these results to derive further properties of a general tensorial spacetime.



 



Chapter 3

General properties and examples for
tensorial spacetimes

In this section we will investigate general properties of a tensorial spacetime. First, we will

define observer frames and investigate their transformation behavior. Second, we will show the

relation of tensorial spacetime geometry to Finsler geometry and give a candidate for a parallel

transport and finally we will show how superluminal motion emerges in tensorial spacetimes and

how vacuum Cherenkov radiation nevertheless imposes a “soft speed limit”.

3.1 Observer frames and observer transformations

We found in the last section that the spacetime geometry seen by massive particles is represented

by the tangent bundle function P ∗. Furthermore, we found that observer trajectories can be

identified with those of infraluminal massive particles in our framework. This leads us directly

to the definition of observer frame in tensorial spacetimes: Let e0 be the tangent of an observers

trajectory at the point x ∈ M parameterized in proper time, i.e. P ∗x (e0) = 1. Via the inverse

Legendre map e0 can be mapped to the covector ε0 = L−1(e0). Now, the spatial slice seen by

the observer e0 is the set of vectors annihilated by ε0. Let us choose a basis ea of vectors in this

subset then we obtain a frame eα = (e0, ea) and the dual frame εα = (ε0, εa) defined such that

εα(eβ) = δαβ . In particular, we have for the co-frame

P (ε0, . . . , ε0) = 1 (3.1)

P (ε0, . . . , ε0, εα) = 0 . (3.2)

Depending on various possible measurement prescriptions for spatial distances, it would be quite

useful to have a prescription for the normalization of the spatial frame elements ea especially for

the interpretation of experimental situations. Unfortunately, there is no distinguished measure-

ment prescription but we will be able to carry on without any.

The co-frame εα can be used to obtain a space-time split of spacetime quantities. An example

would be the dispersion relation itself that can be written as

Px(Eε0 + ~paε
a) = mdegP (3.3)

27
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for m ≥ 0 to obtain a non-covariant dispersion relation of the form E = E(~p) which can be

expanded as

E(~p) =
∞∑
i=0

ca1···aipa1 · · · pai . (3.4)

Usually the latter is the form in which generalized dispersion relations are obtained in quantum

gravity [10, 12, 18]. It is obvious from the constructions above that to find the covariant disper-

sion relation from a non covariant one is rather involved, since one has to specify the observer

who sees the space-time split that leads to the non-covariant form. However, beginning with the

covariant form of a generalized dispersion relation the non-covariant form can be useful since it

relates more directly to measurable quantities.

We may consider the relation between two observer frames at the same point x ∈ M. For that

purpose, we will investigate infinitesimal transformations between covectors on the same mass

shell in following. Let us consider ε′0 = ε0 +δε0 ∈ Cx where δε0 is an infinitesimal variation of ε0.

We assume that δε0 is given such that ε0 and ε′0 satisfy the mass shell condition Px(ε′0) = mdegP .

Note that this condition can also be written using the hyperbolic barrier function fx defined in

Equation (2.36) as

fx(ε0) = fx(ε0 + δε0) . (3.5)

Expanding the right hand side to first order at ε0, we obtain the condition

Lαx(ε0)δε0α = 0 , (3.6)

where Lx(ε0) is the action of the Legendre map Lx on ε0. This equation is holds if

δε0α = ωαβL
β
x(ε0) , (3.7)

where ωαβ is antisymmetric and contains n(n − 1)/2 parameters specifying the infinitesimal

transformations which are generically non-linear due to the generic dependence of the Legrende

map on ε0. If we now set m = 1 to achieve the proper time normalization of the observer frames,

we find that

δeα0 = ωβγP
0···0αβ
x eγ0 , (3.8)

with P 0···0αβ
x := Px(ε0, · · · , ε0, εα, εβ), must hold.

Additionally, we would like to obtain the transformation behavior of the spatial frame components

ea. Let us consider the infinitesimal variation e′a = ea+ δea. For the spatial components we have

by definition:

(ε0 + δε0)(ea + δea) = 0 . (3.9)

By using (3.7) we obtain that this condition is fulfilled if they transform as

δeµα = ωνρP
0···0µν
x eρα . (3.10)

Equations (3.10) and (3.8) can now be expressed in the single equation

e′µσ =
[
δµκ + ωγνP

0···0µ[ν
x δγ]

κ

]
eκσ . (3.11)
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These equations show the infinitesimal transformations connecting neighboring observer frames.

Due to the definition P 0···0αβ
x = Px(ε0, · · · , ε0, εα, εβ) they are generically non-linear. Only in the

case of a degP = 2 polynomial Px corresponding to the Lorentzian metric case, they become

linear. Then, the quantities P
µ[ν
x δ

γ]
κ in Equation (3.11) correspond to the generators of the

Lorentz group.

We need to emphasize, that the above transformations are not uniquely specified by (3.6) and

(3.9). That could be fixed by imposing a normalization condition on the spatial components of

the frame as it is done in the definition of the Lorentz transformations using the metric. However,

as explained above, there is no distinguished normalization condition at hand.

3.2 Lorentzian Finsler geometry and parallel transport

In a next step we can now extend the definition of observer frames to whole worldlines by

considering a parallel transport which will give us a notion of freely falling non-rotating observer

frame. For instance, this is needed if we want to determine the electric and magnetic field

strengths seen by such an observer for a given electromagnetic field strength two-form F . Since

the trajectories of observers are those of massive particles, their motion is governed by the action

I[x] = m

∫
dτP ∗x (ẋ)1/ degP . (3.12)

Using the reparametrization invariance to set P ∗x (ẋ) = 1 along the curve, it is straightforward

to derive the equations of motion and, using in the following standard techniques of Finsler

geometry [110], to bring them to the form

ẍα + Γα(x, ẋ) = 0 (3.13)

with the geodesic spray coefficients

Γα(x, v) =
1

2
gαµ(x,v)

(
∂g(x,v)µγ

∂xβ
+
∂g(x,v)βµ

∂xγ
−
∂g(x,v)βγ

∂xµ

)
vβvγ . (3.14)

These in turn are constructed from the tangent space metrics ge0 defined by

g(x,e0)(u, v) =
1

2

∂2P ∗x (e0 + su+ tv)2/ degP

∂s∂t

∣∣∣∣∣
s=t=0

, (3.15)

whose inverses appearing in the expression (3.14) are guaranteed to exist from the completeness

of the cotangent bundle function P . Indeed, for e0 = L(ε0), an explicit expression for the metric

(3.15) in terms of fL is given by

g(x,e0)αβ = P ∗x
2/degP (e0)

(
−(DDfLx (e0))αβ + 2L−1

x α(e0)L−1
x β(e0)

)
, (3.16)

and for its inverse in terms of fx by

gαβ
(x,ε0)

= Px
2/degP (ε0)

(
−(DDfx(ε0))αβ + 2Lx

α(ε0)Lx
β(ε0)

)
, (3.17)
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where (DDfx(ε0))αβ(DDfLx (L(ε0)))βγ = δαγ . Remarkably, the Finsler metric (3.16) is automati-

cally Lorentzian. We show this as follows: Consider the cotangent frame εα defined above, then

from expression (3.17) it follows that

gαβ
(x,ε0)

ε0αε
0
β = Px

2/degP (ε0) > 0, (3.18)

gαβ
(x,ε0)

ε0αε
a
β = 0. (3.19)

But since any covector ~p on the spatial hyperplane defined by Lx(ε0) can be written as ~p = paε
a,

we have

gαβ
(x,ε0)

paε
a
αpbε

b
β = −P 2/degP

x (ε0)(DDfx(ε0))αβpaε
a
αpbε

b
β < 0, (3.20)

where the last inequality follows from the positive definiteness of the Hessian of fx (see Theorems

4.2 and remark 4.3 of [109]). Thus we conclude that the metric (3.17) and hence its inverse (3.16)

are Lorentzian.

The form of Equation (3.13) suggests the identification of a parallel transport on the manifold

M that gives rise to an identification of geodesics minimalizing the action functional and au-

toparallels, i.e. curves γ for which the tangent vector field γ̇ is parallely transported along the

curve.

For that purpose we define the derivative operators

δν =
∂

∂xν
− Γµν(x, v)

∂

∂vµ
, where Γνµ(x, v) :=

∂Γν(x, v)

∂vµ
. (3.21)

Then, we define the Chern-Rund connection coefficients as follows:

Γνµκ(u, v) =
1

2
gνσ(x,v)

(
δµg(x,v)σκ + δκg(x,v)µσ − δσg(x,v) νκ

)
, (3.22)

which shows full formal analogy to the Levi-Civita connection in metric geometry. Under a

change of coordinates x = x(x̃), the coefficients in (3.22) transform precisely as the coefficients

of a linear connection would due to the use of the δν operators. It is then straightforward to see

that for any vector w ∈ Lx(Cx) and vector field u on M, we can define a new vector field with

components

(∇wu)ν = wα∂αu
ν + Γ(x,w)νµκw

µuκ . (3.23)

We find that ∇w(u + v) = ∇wu + ∇wv and ∇w(fu) = (wf)u + f∇wu for any function f and

vector fields u, v which means that ∇w acts as a derivation on vector fields. Thus, by imposing

the Leibniz rule

∇w(S ⊗ T ) = (∇wS)⊗ T + S ⊗ (∇wT ) (3.24)

we can extend ∇w to act on arbitrary tensor fields S, T on M . The derivation ∇w is not linear

in its directional argument w and leads to what is often called a non-linear connection in the

literature. Nevertheless, the non-linear covariant derivative ∇ achieves the reformulation of the

geodesic Equation (3.13) as the autoparallel equation

∇γ̇ γ̇ = 0 , (3.25)
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for the curve γ which is the necessary condition for a parallel transport to be associated with

observers.

The non-linear connection ∇ provides sufficient structure for the discussion of freely falling non-

rotating frames. The key technical observation is that for a frame field e0, . . . , ed−1 that is

parallely transported along the first frame vector e0,

∇e0 eα = 0 , (3.26)

we have the conservation equation

eµ0∂µ (ge0(eα, eβ)) = 0 . (3.27)

This means in particular that any normalization imposed on spacetime frames using the metric

(3.16) is preserved along the worldline of a freely falling observer. In turn, (3.26) establishes a

consistent notion of freely falling and non-rotating observer frames. This can then be used to

model inertial laboratories.

3.3 “Superluminal” propagation and the vacuum Cherenkov pro-
cess

We found in Section 2.6 that the inclusion C#
x ⊆ Lx(Cx) holds. Since in the generic case C#

x

is indeed a proper subset of Lx(Cx) and the boundary of the hyperbolicity cone C#
x consists of

the velocities of massless particles in a generic tensorial spacetime there are massive particles

moving faster than some massless particles, namely those in Lx(Cx) \ closure(C#
x ). We call

this phenomenon superluminal propagation in the following. We will prove that although these

particle velocities exist in principle, particles moving with this velocities will eventually radiate

off massless particles and due to the related loss of energy, will finally move with velocities only

in C#
x . Furthermore, particles with velocities in the observer cone C#

x , among them all observer,

are stable under this process. The described radiation process will be called vacuum Cherenkov

process in the following, since it resembles the process of radiation of photons from massive

particles moving in matter with a speed faster than the speed of light in that environment.

Let us first specify the process in momentum space: Given a particle with momentum p we

consider the process in which this particle is split into two particles of which one is massive with

momentum q and the other is massless with momentum p−q (see Figure 3.1). We do not bother

here about how this process works on a more fundamental scale regarding any field theoretic

description of the particles involved. We only care about the question whether this process is at

all kinematically possible or not. As a result we obtain the following proposition:

Proposition 3.3.1. The Cherenkov process as described above is forbidden if and only if the

ingoing momentum p lies in the stability cone L−1
x (C#

x ).

Proof. First of all we get from the Third and Fourth Lemma that every observer corresponds

to a massive momentum, C#
x ⊆ Lx(Cx) = interior(C⊥x ), so that L−1

x (C#
x ) is well defined and
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p − q

p

q

Figure 3.1: Vertex for the vacuum Cherenkov process. A particle of momentum p and mass m
radiates off a particle of the same mass m and momentum q and a massless particle of momentum
p− q.

stable energy cone

L−1(C   )#

#C

observers

inverse Legendre map

cotangent space tangent space

Figure 3.2: Stability cone: if and only if an observer can ride on a particle, the particle cannot
lose energy by a vacuum Cerenkov process

always lies within Cx. It is now easy to see that a massive particle of mass m and positive energy

momentum p may only radiate off a positive energy massless particle if there exists a positive

energy massless momentum r ∈ N+
x such that r(Lx(p)) > 0. For consider the function

u(λ) := − lnPx

(
p− λr
m

)
. (3.28)

Since for any positive λ, the covector −λr ∈ −(C#
x )⊥ lies in some half-space of the cotangent

bundle, while p ∈ Cx ⊂ (C#
x )⊥ lies in the corresponding other half, we conclude that for some

λ0 > 1 the line p−λr will necessarily intersect the boundary of Cx, so that limλ→λ0 u(λ0) = +∞.

Further, from Theorems 4.2 and remark 4.3 of [109], we know that for a complete hyperbolic Px

the Hessian of the barrier function − lnPx is positive definite. Hence, we find that u′′(λ) > 0

everywhere on its domain. Now first assume that the massive particle of momentum p decays

into a massive particle of the same mass and of momentum p − r and a massless particle of

momentum r, thus respecting energy-momentum conservation. Then we have from the equality

of masses for the ingoing and outgoing massive particles that u(0) = u(1) = 0. But because

u′′(λ) > 0, the only way for the analytic function u to take the same finite values at λ = 0 and

λ = 1 while tending to +∞ at some λ0 > 1 is to have 0 > u′(0) = −r(Lx(p)). Conversely, assume
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that r(Lx(p)) > 0 for some r ∈ N+
x . Then u′(0) < 0 and we conclude by the mean value theorem

that there must be a (because of u′′(λ) > 0 unique) λ1 with 0 < λ1 < λ0 such that u(λ1) = 0,

i.e., there is an outgoing particle of the same mass such that the process occurs.

Let us illustrate the vacuum Cherenkov process a little more in the 1 + 1 dimensional case for a

fourth degree hyperbolic geometry. The extension of the results to the physical 3+1 dimensional

case and to cases of higher degree is then just a computational and not a conceptual challenge.

Consider a fourth degree hyperbolic, time-orientable and energy-distinguishing polynomial Px
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A1

A2

B

CCx

Figure 3.3: Slow Massless momenta (outer), fast massless momenta (inner cone), mass-shell and
points defining decay regions with different properties.

such that its vanishing setNx is represented by the straight lines in Figure 3.3 and the curve inside

the hyperbolicity cone is the convex mass-shell given by Px(q) = m4. Due to the definition of the

Gauss map from the gradient DPx the outer lines in Figure 3.3 correspond to faster particles and

the inner lines to slower particles. When the outer left line of massless momenta is now shifted to

the point A1 we find that it is tangential to the mass-shell at this point which means that there

will be no second intersection with the mass-shell and thus A1 is the left boundary of the cone

stable under the Cherenkov process. The right boundary A2 is analogously constructed using

the right outer line of massless momenta. All particles with momenta outside of the cone defined

by the lines intersecting the origin and A1 and A2, respectively, can undergo the Cherenkov

process. When we now take the outer cone of massless momenta and shift it to the minimum

of the mass shell, we find that its intersection with the ladder defines again a qualitatively

different set of particle momenta, namely those that change their direction when undergoing the

Cherenkov process (see point B). This is of course a frame-dependent statement, but is of crucial

importance. Consider that we have prepared a source of hypothetical superluminal particles and

we can adjust the energy of the particles generated by that source. If we would put a detector

just distant enough from the source and we would increase the energy just above the point B we

would immediately start to have a considerably lower detection rate of particles from the source

than before. When we shift the outer cone further to the point A1, we obtain the point C which

is the right boundary of the set of momenta of particles that would achieve a stable state when

undergoing the Cherenkov process. Instead, particles with momenta above that point arrive
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at a momentum outside the region marked by A1 and would eventually undergo the Cherenkov

process a second time. This way, regions with any higher number of possible Cherenkov processes

and reflections would appear when conducting this construction further. For the cases discussed,

the result of the source/detection experiment is illustrated in Figure 3.4. To know how far we
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Figure 3.4: Detection of superluminal and infraluminal particles according to their energy.

have to put the detector from the source (depending on the difference between the outer and the

inner cone of massless momenta it could even exceed the radius of the visible part of the universe)

we would need to calculate decay rates of the Cherenkov process. For that we need to develop

the quantum theory for particles satisfying hyperbolic, time-orientable and energy-distinguishing

dispersion relations with degP > 2. The development of Chapters 5 to 7 are in no small part

motivated by this question among orthers.

3.4 Example: Lorentzian geometry from Maxwell electrodynam-
ics

In this and the following section we consider two concrete examples of tensorial spacetimes that

can be derived from matter field equation just in the way we introduced tensorial spacetimes in

Section 2. The first example, treated in this section, will be standard Maxwell electrodynamics

and the resulting geometry will be Lorentzian geometry. The second example, treated in the

following section, will be area metric electrodynamics and the resulting geometry will be described

by polynomials of fourth degree.

Maxwell electrodynamics is usually defined by stipulating the following action for the one-form

field A:

S[A, g] = −1

4

∫
d4x

√
| det(g) | gµνgρσFµρFνσ, (3.29)

where F = dA is the field strength, d is the exterior derivative and gµν are the components of
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the inverse of the metric g−1 in some coordinate-induced frame. We assume the manifold M
to be orientable and to be equipped with a canonical volume form (ωg)µνρσ =

√
|deg(g)|εµνρσ,

where ε is the totally antisymmetric Levi-Cevita symbol with ε0123 = 1. Variation of the action

(3.29) with respect to the field A gives rise to two sets of Euler-Lagrange equations,

dF = 0 and dH = 0 , (3.30)

where the field induction H is the tensor density defined as

Hµν = −1

2

√
|det(g)|εµνρσgραgσβFαβ . (3.31)

Let us assume that we are given a suitable initial data hypersurface Σ0 such that there are

coordinates xα = (t, xa) and Σ lies at t = 0. Then, we define the electric and magnetic fields as

Ea = F (∂t, ∂a) and Ba =
(√
| det(g)|

)−1
ε0abcF (∂b, ∂c) , (3.32)

respectively. These three-component fields cover the full information contained in the field

strength. The set of equations (3.30) however, consists of eight equations. This and the fact

that two of the eight equations do not contain any time derivative tells us that there are only six

evolution equations. They are given by the spatial components of the Euler-Lagrange equations

in (3.30) as the first order system(
AαMN ∂α + CMN

)
uN = 0 , (3.33)

where the E and B are contained in the vector uN = (Ea, B
a) and the matrices Aα are given as

A0M
N =

[
g00gmn − g0mg0n 0

0 δmn

]
, (3.34)

and

AaMN =

[
−2(g0(mgn)a − g0agmn) −1

2

√
|det g|ε0ncd(gcmgda − gcagdm)

(
√
|det g|)−1ε0mna 0

]
, (3.35)

where the indices M,N = 1, . . . , 6 are identified with the indices m,n = 1, . . . , 3 respectively as

M = m+ 3(I − 1) and N = n+ 3(J − 1) where I is the number of the row and J the number of

the column of the matrix on the right hand side of Equation (3.34) and (3.35).

The matrices C will not be relevant for us since we are only concerned with the principal symbol,

which is defined from the highest derivative part of (3.33) (see [101] for the exact expressions).

With the definition (2.2), we obtain from (3.33) the reduced principal symbol P̃x(q) = q0g
−1
x (q, q).

One can show [99] that q0 = 0 is inconsistent with the constraint equations. What remains is then

Px(q) = g−1
x (q, q). The required hyperbolicity of the principal symbol translates then directly

into the condition that gx must be of Lorentzian signature as we prove in the following: Let us

assume that there exists a covector h such that Px is hyperbolic with respect to h, i.e. for all

q the equation Px(q + λh) = λ2g−1
x (h, h) + 2λg−1

x (h, q) + g−1
x (q, q) = 0 has only real roots. But

then the discriminant of this equation is positive, i.e.,

(g−1
x (h, q))2 − g−1

x (h, h)g−1
x (q, q) > 0 .
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We now take a covector basis {ε0, εα} with ε0 = h and such that g−1
x (ε0, εα) = 0. Thus

g−1
x (ε0, ε0) > 0 and the above discriminant condition is written as qαqβg

−1
x (εα, εβ) < 0 for all

qα, qβ, which already proves that g−1
x must be of Lorentzian signature.

Using then the Routh-Hurwitz condition in theorem 2.2.2 we obtain the hyperbolicity cone to h

as

C(Px, h) = {q ∈ T ∗xM| g−1
x (h, q) > 0 and g−1

x (q, q) > 0} . (3.36)

The vanishing set is the usual light cone Nx = {q ∈ T ∗xM| g
αβ
x qαqβ = 0} which in this case

coincides with the smooth part of the vanishing set N smooth
x .

For the metric polynomial Px(q) = g−1
x (q, q) it is easy to see that the duality condition (2.21)

is fulfilled for the polynomial P#
x (v) := gx(v, v) which is again a hyperbolic polynomial since

gx is of Lorentzian signature if and only if g−1 is. Picking a hyperbolic vector field e0 for P#

corresponds then to the usual definition of a time orientation on the Lorentzian spacetime (M, g)

and we obtain C#
x := {w ∈ TxM| gx(e0, w) > 0 and gx(w,w) > 0}. The massless point particle

action is given as

S[x, µ] =

∫
dτ µ gx(ẋ, ẋ) , (3.37)

which is the well-known action for massless point particles on the Lorentzian spacetime (M, g).

That Px is energy-distinguishing also already follows from gx being of Lorentzian signature. This

can be seen as follows: Let v be a generic element of C#
x . The definition of C#

x can be written

using the hyperbolic vector v as C#
x = {w ∈ TxM| gx(v, w) > 0 and gx(w,w) > 0}. On the one

hand, this tells us that gx(·, v) is a covector in (C#
x )⊥. On the other hand, gx(·, C#

x ) = Cx and

(C#
x )⊥ ∪ {0} closed. But the closure(Cx) ∪ −closure(Cx) contains the full light cone.

The massive dispersion relation is given by the expression g−1(q, q)x = m2 , and the Legendre

map is Lx(q) := g−1(·, q)/g−1(q, q) which has the inverse L−1
x (v)=g(·, v)/g(v, v). We obtain the

tangent bundle function P ∗x (v) := g(v, v) , which gives rise to the action

S[x] =

∫
dτ m

√
gx(ẋ, ẋ) (3.38)

governing the motion of massive particles. We find then that a frame for the observer defined by

the vector e0 is defined by the conditions

gx(e0, e0) = 1 and gx(e0, ea) = 0 . (3.39)

Furthermore, in the Lorentzian case a particular normalization of the spatial frame components

is distinguished, namely the condition gx(ea, eb) = −δab which leads to gx(eα, eβ) = ηαβ where η

is the Minkowski metric.

In particular, we find in the case of Maxwell electrodynamics that P# and P ∗ coincide, although,

technically, P ∗ is of course only defined on the image of the Legrende map L(C) = C#. But

as a polynomial, we can easily consider its extension to all of TM. In the next section, we will

consider an example in which P# will differ from P ∗.
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3.5 Example: area metric geometry from pre-metric electrody-
namics

Area metric geometry was introduced in [111, 112] and can be derived in our framework from a

generalization of Maxwell electrodynamics that can be thought of as a special case of pre-metric

electrodynamics [24–26]. Consider a tensor Gµνρσ having the symmetries

Gµνρσ = −Gνµρσ = Gνµσρ and Gµνρσ = Gρσµν . (3.40)

We call such an object an area metric. Its inverse is defined via the relation

(G−1)αβµνGµνρσ = 4 δ[α
ρ δ

β]
σ . (3.41)

To write the generalization of the Maxwell action (3.29) there is still one element missing namely

a volume element since
√
| det(g) | is still formulated in terms of the metric. It was shown in

[94] that a good generalization for the volume element constructed from the area metric G only

is the scalar density of weight one f(G) = | det(Petrov(G))|1/6 where PetrovG is defined as the

6× 6 matrix

Petrov(G) =



G0101 G0102 G0103 G0123 G0131 G0112

G0202 G0203 G0223 G0231 G0212

. . . G0303 G0323 G0331 G0312

. . . G2323 G2331 G2312

. . . G3131 G3112

. . . G1212


. (3.42)

Then, we obtain the action

S[A,G] = −1

8

∫
dx4f(G)

[
FαβFγδ G

αβγδ
]
, (3.43)

where f(G) = | det Petrov(G)|1/6.

We can now follow the same steps as in the case of Maxwell electrodynamics to investigate area

metric electrodynamics from the perspective of tensorial spacetime geometries. As a first step,

we have to obtain the field equations from the action (3.43). By varying with respect to the field

A and using the definition of the field strength, we obtain the field equations as

dF = 0 and dH = 0 , (3.44)

where as H is called the field induction and is related to the field strength by

Hαβ = −1

4
f(G) εαβµνG

µνρσFρσ . (3.45)

By introducing coordinates xa = (t, xα) such that t = 0 provides an initial data surface Σ we

can perform a space-time split of the equation. For that purpose, we first define the electric and

the magnetic fields, Ea and Ba respectively1, as

Ea := F (∂t, ∂a) and Ba := f−1(G)ε0abcF (∂b, ∂c) . (3.46)

1Formulating the Euler-Lagrange equations in terms of these gauge independent variables Ea and Ba is the
only way to deal with gauge theories when deriving the principal symbol.
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The Euler-Lagrange equations in (3.44) represent a set of eight partial differential equations

for the six field components Ea and Ba. However, we find, as in the metric case, that the zero

components of both equations do not contain any time derivative and hence, represent constraint

equations giving restrictions on the initial data on Σ. The spatial components of (3.44) represent

the evolution equations and can be written as the set of first order equations(
Ab

M
N ∂b + CMN

)
uN = 0 , (3.47)

where uN := (Eα, B
α) and the 6× 6 matrices Ab are given as

A0M
N =

[
G0m0n 0

0 δmn

]
, (3.48)

and

AaMN =

[
−2G0(mn)a −1

2f(G)ε0ncdG
cdma

f(G)−1ε0mna 0

]
. (3.49)

The matrices CMN depend on the area metric tensor G and the volume element f(G) but since

they appear only in the lower order terms of (3.47), they are not relevant for the construction of

the principal symbol which is to be calculated from the determinant of Aαqα. Before computing

the determinant, we decompose the area metric G as

Petrov(G)[αβ][γδ] =

[
M K
KT N

]
, (3.50)

with antisymmetric index pairs [01], [02], [03], [23], [31], [12]. The matrices M,K,N are 3 × 3

matrices related to the area metric through

Mab = G0a0b , Ka
b =

1

2
ε0bmnG

0amn ,

Nab =
1

4
ε0amnε0bsdG

mnsd, (3.51)

Using now that for any n× n matrices A,B,C,D

det

[
A B
C D

]
= det(AD −BC) if CD = DC, (3.52)

we can write the determinant of Aαqα as the determinant of a 3× 3 matrix as

f2(G)det(Aαqα) = det
(
G0m0nq2

0 − 2G0(mn)aqaq0 +Gmancqaqc

)
= −q2

0Px(q) , (3.53)

where PGx(q) on the right hand side of the equation above is known as the Fresnel polynomial

and is cast into the covariant expression

Px(q) = − 1

24
(ωGx)mnpq(ωGx)rstuG

mnr(a
x Gb|ps|cx Gd)qtu

x qaqbqcqd , (3.54)

with (ωGx)mnpq = f(G)εmnpq.

Remark that the factor f2(G) in front of the determinant in Equation (3.53) makes PGx a scalar

function as required. One can also show, as in the metric case, that q0 = 0 is inconsistent with

the constraint equations, such that we finally find that the massless dispersion relation on an
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area metric background as derived from the action (3.43) is given by Px(q) = 0. This result

has been obtained first by Hehl, Rubilar and Obukhov [113],[114] in the context of pre-metric

electrodynamics.

To carry on with the discussions of the properties of area metric geometries from the perspective

of general tensorial spacetimes we will now introduce a classification of area metrics. First, an area

metric can of course be classified in different equivalence classes under GL(4)-transformations, i.e.

two area metrics H and G are in the same equivalence class if there exists a GL(4)-transformation

t relating H and G as

Gαβγδ = tαµt
β
νt
γ
ρt
δ
σH

µνρσ . (3.55)

However, in [94] it was shown that these infinitely many equivalence classes can be ordered in

23 meta-classes. Let us consider the endomorphism J in the space of two-forms at x defined in

components as

Jγδ
αβ := Gαβµν(ωg)µνγδ . (3.56)

The meta-classes of area metrics can now be labeled by symbols of the type [AĀ . . . BCD] with

A,B,C,D integers called Segré types encoding the size of the Jordan blocks of J and whether

the eigenvalues of the corresponding blocks of J are real or complex. Here, an integer A followed

by Ā tells us that J contains a Jordan block of size A with a complex eigenvalue of J and another

Jordan block of the same size containing the complex conjugate of that eigenvalue. Otherwise,

J contains a Jordan block of size B,C,D containing real eigenvalues of J . As an example

the meta-class [11̄11̄11̄] contains six different complex eigenvalues with three of them just the

complex conjugate of the other three. The resulting classification is provided by theorem 4.3 of

[94]. The equivalence classes in every meta-class can be parameterized by real parameters and

can be specified by giving one area metric in its Petrov form containing these parameters as

entries called normal form in the following. We obtain

• three meta-classes where the Jordan blocks of the corresponding endomorphism J only

have complex eigenvalues σi ± iτi,

• four meta-classes with real Jordan blocks in J of at most size one

• and 16 meta-classes with at least one real Jordan block in J of size greater or equal two.

It was proven in Lemma 5.1 of [94] that the vanishing set of the principal polynomial (3.54) for

the meta-classes V III to XXIII contain at least one plane. From proposition 2.5.1 follows then

that the meta-classes V III to XXIII cannot give rise to time-orientable geometries. Hence, they

are excluded from the consideration immediately. We will show only one metaclass explicitly,

namely the metaclass with the Segré type [11̄ 11̄ 11̄] which we gave the number I since it

contains the class of Lorentzian metrics. One element G of the corresponding equivalence class



40 CHAPTER 3. GENERAL PROPERTIES AND EXAMPLES

under GL(4)-transformations is then given as

Petrov(G) =



−τ1 0 0 σ1 0 0
0 −τ3 0 0 σ3 0
0 0 −τ2 0 0 σ2

σ1 0 0 τ2 0 0
0 σ3 0 0 τ3 0
0 0 σ2 0 0 τ1

 , (3.57)

The validity of our four conditions for the principal symbol of the remaining 7 meta-classes

depends on the values of the parameters in the meta-classes and how they appear in the normal

form. Due to the complexity of the problem, there is no result yet telling us for which values of

the parameters which of the 7 meta-classes lead to hyperbolic principal polynomials. However, it

was possible to find the Gauss dual P# for the first 7 meta-classes using the inverse area metric

as

P#
x (q) = − 1

24
(ω−1
Gx

)mnpq(ω
−1
Gx

)rstu(Gx)mnr(a(Gx)b|ps|c(Gx)d)qtuv
avbvcvd , (3.58)

where the inverse of ωGx is defined analogously to the inverse of the metric. To find the Legendre

P ∗ is much harder and there does not exist any examples for degP ≥ 4 yet. This is of course

partly due to the non-polynomial nature of P ∗x .



Chapter 4

Non-tensorial classical field theories
on tensorial spacetimes

In the previous sections, we showed how tensorial spacetimes relate to the massless dispersion

relation Px(q) = 0 which arises from the corresponding matter field theories in the geometric

optical limit. The massive dispersion relation

Px(q) = mr (4.1)

with r = degP and the action (2.35) governing the motion of free massive particles were then

postulated. It was shown that these postulates led to a consistent identification of the trajectories

of observers with those of massive particles. Moreover, the specific form of the massive dispersion

relation allowed for the definition of observer frames and parallel transport. This was interpreted

as the interpretability of tensorial spacetimes in purely geometrical terms. In this section, we

will consider field theories with the dispersion relation (4.1) on a flat tensorial spacetime: We

assume that there exists a coordinate system in which the components of the polarization tensor

P
µ1...µdegP
x are constant all over the n dimensional manifold M and M ∼= Rn. This is to some

extent the generalization of Minkowski space to tensorial spacetimes. Then we can identify TxM
and M for every point x ∈ M. In the following, we will always assume to be working in such a

coordinate system and we will use P equivalently for Px and x equivalently for tangent vectors

and points in M.

We will consider classical field theories (also non-tensorial ones) leading to massive dispersion

relations. In particular, we will show that there exists a well-posed initial data problem for those

theories and we will find generalizations of scalar and fermionic fields. The work presented in

this chapter was done in collaboration with Frederic P. Schuller and Sergio Rivera.

4.1 Scalar field equations

As the first and easiest case we will investigate a real scalar field φ :M→ R. This will also be

the case for which we will investigate the quantum field theory in a later section. For the field

equation [
(−1)r/2Pµ1...µr∂µ1 . . . ∂µr −mr

]
φ = 0 , (4.2)
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we find that φ = e−i p.x is a solution only if p satisfies the massive dispersion relation (4.1). A

possible action for that equation is given by

SM[φ] =

∫
M
dnxL(φ, ∂µφ, . . . , ∂µ1 . . . ∂µr/2φ) , (4.3)

(note that r = degP is always even, see proposition 2.5.1) with

L(φ, ∂µφ, . . . , ∂µ1 . . . ∂µr/2φ) = Pµ1...µr 1

2
(∂µ1 · · · ∂µr/2φ)(∂µr/2+1

· · · ∂µrφ)− 1

2
mrφ2 . (4.4)

This can be generalized to a complex field Φ :M→ C as

L(φ, ∂µΦ, . . . , ∂µ1 . . . ∂µr/2Φ) = Pµ1...µr 1

2
(∂µ1 · · · ∂µr/2Φ∗)(∂µr/2+1

· · · ∂µrΦ)− 1

2
mrΦ∗Φ . (4.5)

such that both, Φ and Φ∗, satisfy the scalar field Equation (4.2). The action (4.3) is invariant

under a local U(1) transformation which gives rise to the current

jµ(Φ) = i

r/2−1∑
l=0

(−1)lPµν1···νr−1 [(∂ν1 · · · ∂νlΦ∗)
(
∂νl+1

· · · ∂νr−1Φ
)

(4.6)

− (∂ν1 · · · ∂νlΦ)
(
∂νl+1

· · · ∂νr−1Φ∗
)
] . (4.7)

This current satisfies the continuity equation ∂µj
µ = 0 if Φ is a solution to the field equations1. By

promoting the global U(1) symmetry to a local one we obtain the minimal coupling Lagrangian

L(Φ, ∂µφ, . . . , ∂µ1 . . . ∂µr/2Φ) = Pµ1...µr 1

2
(Dµ1 · · ·Dµr/2Φ∗)(Dµr/2+1

· · ·DµrΦ)

−1

2
mrΦ∗Φ . (4.8)

where Dµ = ∂µ + ieAµ is the covariant derivative associated with the Abelian gauge field Aµ.

Then, e is the charge associated with the field Φ. As we saw in Section 3.4, area metric electro-

dynamics gives rise to a fourth order dispersion relation P (q) = m4 for massive point particles.

By considering the corresponding massive scalar field theory, we would obtain a theory of area

metric electrodynamics with charges described by the equation 4.2. For the sake of complete-

ness, we will present the current for the coupling to the electromagnetic field also for the field

equations of lower order than r, which we will consider in the following.

4.2 Field equations of first order

For a systematic study of field theories of derivative order lower than r giving rise to the massive

dispersion relation (4.1), we start with the lowest possible order equation

(−iΓµ∂µ +m I) Φ = 0 . (4.9)

For plane wave solutions of the form Φp = v(p)eip.x with v(p) ∈ V we find as a solvability

condition that

det (Γµpµ +mI) = 0 , (4.10)

1The real version of the current in (4.6) is exactly what we will find for the current in (5.21) in Section 5.
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from which we can determine conditions on the Γµ precisely by requiring that (4.10) coincides

with the massive dispersion relation (4.1) to some integer power α. We can write this as the

condition that

det (Γµpµ +mI) = c (P (p)−ms)α (4.11)

for some hyperbolic, time-orientable and energy-distinguishing polynomial P , where s = degP

and c is a nonzero complex number. That this equation should also hold for p = 0 justifies

subsequently the assumption that the coefficient matrix following m must be invertible which we

used to set it to be the identity without loss of generality in Equation (4.9).

Theorem 4.2.1. For (4.9) to have (4.1) as its dispersion relation, the following conditions on

the coefficient matrices Γa must hold

• (i) {Γµ1 , . . . ,Γµr} = r!Pµ1,...,µrI where {A1, . . . , Al} =
∑

π∈Sl Aπ(1) . . . Aπ(l) with Sl the set

of all permutations of l elements and

• (ii) Tr({Γµ1 , . . . ,Γµl}) = 0 for all l = 1, . . . , r − 1.

Thus for a covariant dispersion relation of degree r = degP , the coefficient matrices Γµ satisfy

a (degP )-ary algebra expressed in condition (i) which is a generalization of the binary Dirac

algebra, and some supplementary conditions (ii).

Proof. First, we are going to derive conditions for the more general form of the Equation (4.9)

as

((−i)sΓµi...µs∂µ1 · · · ∂µs +ms I) Φ = 0 . (4.12)

As in the special case above, for (4.12) to lead to the dispersion relation (4.1), the condition

det (Γµi...µspµ1 · · · pµs +msI) = c (P (p)−mr)α (4.13)

must hold for some complex constant c and some integer α. By setting p = 0 we find that

c = (−1)α and that α = sd/r with d the dimension of the vector space V in which the coefficient

matrices Γµi...µs are represented and r = degP . With Γ(p) = Γµi...µspµ1 · · · pµs , we arrive at the

equation

det
(
I +m−sΓ(p)

)
=
(
1−m−rP (p)

) sd
r . (4.14)

Using the identity det(A) = exp(Tr(log(A))) we can compare the left and right hand side of the

equation using the Taylor series expansions of log(1 + x) at x = 0 and obtain

∞∑
j=1

(−1)j+1

j
m−sjTr

(
(Γ(p))j

)
= −sd

r

∞∑
j=1

1

j
m−rjP j , (4.15)

which can be only fulfilled if r/s ∈ N. In that case, we obtain that for ρ ∈ N must hold

(−1)ρ+1Tr ((Γ(p))ρ) =

{
−dP ρs/r(p) for ρs/r ∈ N

0 else
(4.16)
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Defining now N := ρs/r we find that

Tr

((−Γ(p))r/s

P (p)

)N = D (4.17)

for all N ∈ N. This is only possible if (−Γ(p))r/s = P (p)I. Since this must hold for all p we find

that

• (i) Γ(µ1,...,µs . . .Γµr/s−s+1...µr/s) = (−1)r/sPµ1,...,µrI and

• (ii) Tr(Γ(µ1,...,µs . . .Γµ(l−1)s+1...µls)) = 0 for all l = 1, . . . , r/s− 1

which reduces to the expressions in the theorem for the case of s = 1. �

Example: First order field equation on Lorentzian spacetime

Let us consider the metric dispersion relation ηabqaqb −m2 = 0 where η = diag(1,−1,−1,−1)

and n = 4 which is 3 + 1-dimensional Minkowski space. Since r = 2 in this case, theorem 4.2.1

tells us that we have to find matrices γ(q) = γµqµ satisfying

{γµ, γµ} = 2ηµν and Tr(γµ) = 0 . (4.18)

This is the standard Dirac algebra and a set of matrices γµ fulfilling the above conditions is the

set of Dirac matrices which are given in the Weyl representation as

γµ =

[
0 σµ

σ̄µ 0

]
, (4.19)

where σµ := (I2×2, σ
m) and σ̄µ := (I2×2,−σm), with σm the Pauli matrices satisfying

σ(aσ̄b) = σ̄(aσb) = ηabI2×2 . (4.20)

Example: First order field equation on bimetric spacetimes

The second example we investigate is the case of a fourth order hyperbolic polynomial spacetimes

such that the polynomial P factorizes as P (q) = g−1(q, q)h−1(q, q) where g−1 and h−1 are

Lorentzian metrics. We denote such a spacetime as bi-metric in the following. A principal

polynomial that factorizes in two hyperbolic polynomials of degree two arises for instance in the

case of area metric electrodynamics when the area metric is of meta-class I and the parameters

fulfill the conditions σ1 = σ2 = σ3 and τ1 = τ2. However, not all bi-metric spacetimes arise from

area metric spacetimes.

Let us now employ theorem 4.2.1 to find matrices Γµ that give rise to the massive dispersion

relation g−1(q, q)h−1(q, q) = m4 via the field equations (4.9). We find that they have to fulfill

the quartary algebra

{Γµ,Γν ,Γγ ,Γδ} = 4Γ(αΓβΓγΓδ) = 4g(αβhγδ)I , (4.21)
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and the supplementary trace conditions

Tr(Γα) = Tr({Γα,Γβ}) = Tr({Γα,Γβ,Γγ}) = 0 . (4.22)

Since g−1 and h−1 are inverse Lorentzian metrics, we can find frames e and f such that

gγδ = ηαβeγαe
δ
β and hγδ = ηαβfγαf

δ
β . (4.23)

In terms of these frames we can give a representation satisfying the above conditions with the

16× 16 matrices

Γα =



0 0 0 eαβσ
β 0 0 0 0

0 0 fαβ σ
β 0 0 0 0 0

fαβ σ̄
β 0 0 0 0 0 0 0

0 eαβ σ̄
β 0 0 0 0 0 0

0 0 0 0 0 0 eαβσ
β 0

0 0 0 0 0 0 0 fαβ σ
β

0 0 0 0 0 fαβ σ̄
β 0 0

0 0 0 0 eαβ σ̄
β 0 0 0


, (4.24)

where σα and σ̄α are again the Pauli matrices.

Action principle and coupling to electrodynamics

The conditions we identified in theorem (4.2.1) to ensure that the wave equations (4.9) give rise

to a massive dispersion relation of the form (4.1) do not ensure that these field equations are

the Euler-Lagrange equations obtained from an action. However, that would be desirable, for

instance, to learn something about symmetries and coupling terms to other fields or to derive

objects like the energy momentum tensor. The additional conditions that have to be satisfied to

ensure the existence of an action are given in the following proposition.

Proposition 4.2.2. The set of equations (4.9) can be derived from the scalar action functional

S[Φ] =

∫
dnx Φ̄ [i (Γ)µ∂µ −mr] Φ , (4.25)

where Φ̄N = Φ†MΓMN , if the matrix Γ is such that

(Γ†)−1(Γµ)†Γ† = Γµ . (4.26)

Moreover, the action is real if, in addition, the matrix Γ is Hermitian, i.e., Γ† = Γ.

Proof. Variation of the action above with respect to Φ̄ trivially reproduces equations (4.9). But

we have to make sure that the variation of the action with respect to Φ gives rise to the same

field equations. But we obtain

(δΦL)† = 0 ⇒ (i)r(Γµ)†Γ†∂µΦ−mrΓ†Φ = 0 .
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Multiplying the last expression by (Γ†)−1, we indeed obtain that Equation (4.26) must hold.

Concerning the reality of the action, using integration by parts and assuming that Equation

(4.26) is satisfied, we obtain

S†[Φ] =

∫
dnxΦ†Γ† [i (Γ)µ∂µ −mr] Φ .

Thus, S†[Φ, Φ̄] = S[Φ, Φ̄] if Γ = Γ†, which proves the proposition.

From the action in 4.25 we can now derive a current as we did for the scalar field above. The

action (4.25) is invariant under a global U(1) transformation and Noether’s theorem leads to the

expression

jµ(Φ) = i

[(
∂L

∂(∂µΦ)

)
Φ

]
= iΦ̄ ΓµΦ (4.27)

which satisfies the continuity equation ∂µj
µ(Φ) = 0.

The minimal coupling to the electromagnetic field A is obtained by promoting the global U(1)

symmetry of the action to a local one. Then, we find the Lagrangian density

L(Φ) = Φ̄ [iΓµDµ −m] Φ , (4.28)

where Dµ = ∂µ + ieAµ and e is the charge associated with the field ψ. Given an action SEM for

the one form field A and expanding the covariant derivative in the expression above, we find the

Lagrangian density

L(Φ, A) = Φ̄ [iΓµ∂µ −m] Φ + iejµAµ + LEM , (4.29)

for the full electrodynamics.

Example: First order field equation on Lorentzian spacetime

Let us again consider the metric dispersion relation ηabqaqb − m2 = 0 in 3 + 1-dimensional

Minkowski space with the matrices Γµ we identified in Equation (4.19). It is then easily verified

that Γ = γ0 satisfies the conditions in proposition 4.2.2. Hence, we recover the metric Dirac

equation as obtained from the real Lagrangian density

L = iΦ̄γµ∂µΦ−mΦ̄Φ . (4.30)

Example: First order field equation on bimetric spacetimes and coupling to
bimetric electrodynamics

Let us now consider again the case of P (q) = g−1(q, q)h−1(q, q). The reader might have wondered

why we considered the 16-dimensional representation of the Γ matrices in (4.24) while already

each one of the diagonal blocks satisfies the conditions of theorem 4.2.1 separately. The reason

for that is that we need both blocks to find a matrix Γ satisfying the condition of proposition
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4.2.2. We find that

Γ =



0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0

0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0


(4.31)

satisfies

Γ† = Γ, Γ−1 = Γ, and Γ Γa† Γ = Γa .

Defining Φ̄ = Φ†Γ, the Dirac equation in (4.9) with the matrices Γµ above is equivalent to the

Euler-Lagrange equations to the action

S[Φ] =

∫
dnx Φ̄ [iΓµ∂µ −m] Φ . (4.32)

Restricting attention to area metrics G giving rise to bimetric dispersion relations PG = g−1h−1

(which have been identified in [115]), we obtain the Lagrangian

L(Φ, A) = Φ̄ [iΓµ∂ν −m] Φ + iejµAµ −
1

8
GµνρσFµνFρσ , (4.33)

which describes the interaction of the electromagnetic field A and the Dirac field ψ on a bimetric

area metric spacetime. Using the current in (4.27) one might proceed with the quantization

of this Lagrangian in order to study, for instance, refinements to quantum electrodynamics on

hyperbolic, time-orientable and energy-distinguishing spacetimes [116].

There is still an important point that must be discussed, namely the freedom in the choice of

frames e and f for the construction of the matrices Γµ and the question how far the action

(4.32) is invariant under this choice. First note, that we can perform two independent Lorentz

transformations

e′µν = Λµρ(α)eρν and f ′µν = Λµρ(β)fρν (4.34)

on the frames e and f maintaining the property that they bring the Lorentzian metrics g−1 and

h−1 to the Minkowski form (where α and β stand for the parameters of each transformation).

We thus have the freedom SO(1, 3)× SO(1, 3) in choosing the matrices Γµ.

More precisely, we can consider transformed matrices Γ′µ with frames f ′ and e′ related to the old

frames by equations (4.34) which still satisfy the bimetric quartic dispersion relation, and they

can therefore be equally used in order to write our Dirac equation. At the level of the matrices

these transformations can be implemented using the Pauli matrices as

Γ′µ = T (α, β)ΓµS†(α, β) (4.35)
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where

T (α, β) =



AL(α) 0 0 0 0 0 0 0
0 AL(β) 0 0 0 0 0 0
0 0 AR(β) 0 0 0 0 0
0 0 0 AR(α) 0 0 0 0

0 0 0 0 AL(α) 0 0 0
0 0 0 0 0 AL(β) 0 0
0 0 0 0 0 0 AR(β) 0
0 0 0 0 0 0 0 AR(α)


(4.36)

and

S(α, β) =



AR(β) 0 0 0 0 0 0 0
0 AR(α) 0 0 0 0 0 0
0 0 AL(β) 0 0 0 0 0
0 0 0 AL(α) 0 0 0 0

0 0 0 0 AR(α) 0 0 0
0 0 0 0 0 AR(β) 0 0
0 0 0 0 0 0 AL(α) 0
0 0 0 0 0 0 0 AL(β)


(4.37)

where

AL(α) = e−
1
4
αµνσµσν (4.38)

AR(α) = e−
1
4
αµνσµσν .

where αµν is the antisymmetric matrix associated to the parameters of the Lorentz transformation

denoted with α and analogously for AL(β) and AR(β). Solutions of the equations of motion to

the transformed Γ-matrices are given by

Φ′ = (S†)−1Φ (4.39)

when ψ is a solution to the untransformed matrices. We find that the kinematical term in the

action is invariant under simultaneous transformation of Γ-matrices and solutions if

Γ((S†)−1)†ΓT = I , (4.40)

which is always fulfilled. In contrast, for the mass term we find the condition

Γ((S†)−1)†Γ(S†)−1 = I , (4.41)

which is only fulfilled if α = β.

We notice that for any two arbitrary Lorentz transformations Λ(α) and Λ(β), there exist two

Lorentz transformations λ and λ′ such that

Λ(α) = λλ′ and Λ(β) = λ−1λ′ . (4.42)

Indeed, this is achieved by taking λ =
√

Λ(α)Λ−1(β) and λ′ =
√

Λ(α)Λ−1(β)Λ(β). The above

statement about the invariance of the action tells us that every transformation where λ′ is arbi-

trary and λ is the identity leads to a unitarily equivalent representation of the quartary algebra
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(4.21). If λ is not the identity we arrive by the transformation (4.42) at a different action if the

mass is non-zero. Hence, via applying the transformation labeled by λ to the matrices Γµ we

obtain a six parameter family of first order field theories fulfilling the conditions of theorem 4.2.1

and proposition 4.2.2.

Let me summarize: We defined the massive scalar field theory and generalized Dirac equations

on tensorial spacetimes. In particular, we found conditions the coefficient matrices of the field

equation for a generalized Dirac equation must fulfill to have the massive dispersion relation

(2.34) and to derivable via an action principle. We also gave charged currents for all these

massive matter field theories that can be used to couple them to electrodynamics.

To establish quantum electrodynamics on tensorial spacetimes and to deal with the massive field

theories further, we would now like to have a quantization procedure these fields. That would

be of particular interest for the calculation of decay rates in the vacuum Cherenkov process.

Furthermore, having a quantum theory of matter fields at hand, other results could be derived

that would help to compare them with experimental results of earth bound particle physics or

observations in astroparticle physics.

To investigate the possibility for such a quantization scheme is the aim of the next chapters.



 



Chapter 5

Background independent QFT:
introduction to the general boundary
formulation

In this chapter we will introduce the general boundary formulation (GBF). In the first section,

we will start from standard quantum mechanics to motivate the setup we will use; Hilbert spaces

of maps over phase spaces. This extends then naturally to quantum field theory. Finally, we will

give the axiomatic basis of the GBF.

In the second section, we will present the probability interpretation of the GBF and the gen-

eralized Born rule. In the third section, we will present the quantization of observables in the

GBF.

In the fourth section, we will start from an action for a scalar field on a general background

and derive its kinematics using notions of symplectic geometry. In Section 5.5 to 5.10, we will

review the holomorphic quantization scheme of the GBF introduced in [59] which we will use

in Chapter 7 to quantize a scalar field in non-metric tensorial spacetime. In Section 5.5, we

will introduce Kähler polarizations and positive complex structures and explain that there is a

one-to-one correspondence between them. In the framework of the holomorphic representation,

we will introduce coherent states and a notion of vacuum state. We will explain what unitary

evolution means in that context and we will show how Weyl observables are quantized and ladder

operators give rise to the one particle sector of the Hilbert space.

5.1 General Boundary Formulation: Axiomatic framework

The general boundary formulation (GBF) was developed mainly to cover the problem of time

coming up when one tries to quantize gravity [73]. It can be stated the following way: The

standard formulation of quantum theory relies on a notion of time evolution. The space-time

split is defined by the metric as we explained in Section 1. In General Relativity however, gravity

is encoded precisely in the metric. Hence, if one wants to start quantizing the metric to quantize

gravity without having a background metric in advance, i.e. non-perturbatively, there is no

space-time split defined that could be used for the quantum theory. Additionally, the GBF may

51
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provide a way to solve the problem of locality in quantum gravity [68] which can be stated as

follows: On Lorentzian spacetimes, quantum field theories are required to be microcausal which

means that spacelike separated measurements can be performed independently. That enables

us to consider measurements locally, i.e. without considering spacelike separated parts of the

Lorentzian spacetime. Again, this definition of locality hinges on the existence of a Lorentzian

metric defining the causal structure of the Lorentzian spacetime.

Now, the GBF is a true generalization of quantum theory that neither relies on a metric nor

on a spacetime split. It is an axiomatic framework that resembles that of topological quantum

field theory [74] from which it was originally inspired. It is based on a generalization of the

notion of transition amplitudes from which conditional probabilities can be derived using a

generalized Born rule. This retreat to conditional probabilities is argued to solve to some extend

the measurement problem of quantum gravity [73].

Let me mention shortly that although generically no Lorentzian metric is needed in the GBF,

Lorentzian spacetimes represent a good testing ground for the GBF framework. Results of the

GBF in Lorentzian spacetimes are in particular that the crossing symmetry of the S-matrix

of perturbative quantum field theory is a general property of scalar quantum field theories in

the GBF [71] and that in the GBF, one can provide meaningful and rigorous definitions for in-

and out-states and the S-matrix also in Anti-deSitter space [65]. Using the same techniques, it

should also be possible to construct a quantum field theory for a stationary black hole spacetime.

Besides the mentioned results dealing with scalar fields, the GBF was applied to fermionic field

theories in [62] and to two-dimensional Yang-Mills theories in [58] where also regions with corners

were considered.

In the following, we will motivate the mathematical structure of the GBF by shortly reviewing

the standard formulation of quantum mechanics and quantum field theory. Then we will intro-

duce the axioms of the GBF.

In the standard formulation of quantum theory, the states of a physical system are represented

as maps ψ from a suitable restricted subspace of the phase space of the classical system to

the complex numbers forming a complex Hilbert space H. For instance, in the case of a non-

relativistic point particle in flat space the subspace of the phase space used for the position

representation of states is the set of all points in space which is modeled by R3. A physical

process is then modeled as the unitary evolution starting at a state ψ1 ∈ H associated with an

instant of time t1 to a state ψ2 ∈ H associated with an instant of time t2, if no measurement

occurs and a projection otherwise. Eventually, the theory leads to the prediction of transition

amplitudes ρ(ψ1, ψ2) = 〈ψ2, U(t2, t1)ψ1〉 via an evolution operator U and the inner product on

the Hilbert space H. From that we obtain the probability density for the above evolution1 as

the modulus squared.

Now in Quantum Field Theory (QFT) the systems under consideration are fields and the config-

1Here, the bar denotes the complex conjugate.



5.1. GENERAL BOUNDARY FORMULATION: AXIOMATIC FRAMEWORK 53

uration space corresponds to initial data given on an entire oriented2 Cauchy hypersurface3 Σ.

Again the theory leads to the prediction of amplitudes ρ(ψ1, ψ2) that give rise to the probability

for an evolution between states ψ1 and ψ2. Like the configuration spaces at times t1 and t2 ,

also the states ψ1 and ψ2 correspond to Cauchy hypersurfaces at t1 and t2, respectively. For a

global hyperbolic spacetime there is a foliation of the spacetime by Cauchy hypersurfaces. Let

the foliation parameter be t. Then, we find for every pair of Cauchy hypersurfaces Σ1 and Σ2

of that foliation a region M such that the boundary ∂M is the union of Σ1 with Σ2 where Σ2 is

the same hypersurface as Σ2 but with the opposite orientation. Furthermore, we can construct

the “boundary Hilbert space” H∂M = H1 ⊗H∗2, where H1 and H2 are two copies of the Hilbert

space H associated with the hypersurfaces Σ1 and Σ2 respectively and H∗2 is the dual Hilbert

space to H2.

Now, in the GBF these constructions are generalized in an axiomatic way. To write down the

axioms, we first define some notions that will be used frequently in this thesis. Let M be an

n-dimensional differentiable manifold.

• A region is an oriented n-dimensional submanifold of M, possibly with boundary.

• A hypersurface is an oriented (n− 1)-dimensional submanifold of M without boundary.

• If Σ is a hypersurface, then Σ denotes the same manifold with opposite orientation.

• The symbol ⊗ denotes the tensor product of vector spaces and the symbol ⊗̂ denotes the

completed tensor product of Hilbert spaces.

Orientation of a d-dimensional manifold is meant here in the usual sense namely that there exists

a nowhere vanishing d-form on that manifold. In the case of a hypersurface Σ, this translates

directly to the notion of orientation we introduced above (the choice of a nowhere vanishing

normal vector co-vector field).

Since the GBF is still work in progress, I will present here the most recent set of axioms that can

be found in [59]. It differs from preceding versions mostly in formulations and technical details

such as the inclusion or exclusion of boundaries with corners.

(T1) Associated to each hypersurface Σ is a complex separable Hilbert space HΣ, called the

state space of Σ. We denote its inner product by 〈·, ·〉Σ.

(T1b) Associated to each hypersurface Σ is a anti-linear isometry ιΣ : HΣ → HΣ, i.e. ι(λψ) =

λι(ψ) for all ψ ∈ HΣ and λ ∈ C. This map is an involution, in the sense that ιΣ ◦ ιΣ is the

identity in HΣ.

2The orientation of a hypersurface Σ is the arbitrary choice of which nowhere vanishing normal co-vector fields
to Σ we call positive and which negative oriented with respect to Σ.

3We have a Cauchy hypersurface if initial data given on that hypersurface lead to a well posed initial data
problem as it was defined by Hadamard, that is the solutions depend uniquely and continuously on the initial
data.
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(T2) Suppose the hypersurface Σ decomposes into a disjoint union of hypersurfaces Σ = Σ1∪· · ·∪
Σn. Then, there is an isometric isomorphism of Hilbert spaces τΣ1,...,Σn;Σ : HΣ1⊗̂ · · · ⊗̂HΣn →
HΣ. The composition of the maps τ associated with two consecutive decompositions is

identical to the map τ associated to the resulting decomposition.

(T2b) The involution ι is compatible with the above decomposition. That is τΣ1,...,Σn;Σ◦(ιΣ1⊗̂ · · · ⊗̂ιΣn) =

ιΣ ◦ τΣ1,...,Σn;Σ.

(T4) Associated with each region M is a linear map from a dense subspace H◦∂M of the state

space H∂M of its boundary ∂M (which carries the induced orientation) to the complex

numbers, ρM : H◦∂M → C. This is called the amplitude map.

For completeness, we will give the following three additional axioms, which however will not be

used explicitly in this thesis.

(T3x) Let Σ be a hypersurface. Consider the boundary ∂Σ̂ of the associated “empty region” Σ̂ (it

can be seen as a limit case of a region) to be given by the disjoint union ∂Σ̂ = Σ∪Σ′, where

Σ′ denotes a second copy of Σ. Then, τΣ,Σ′;∂Σ̂(HΣ ⊗HΣ′) ⊆ H◦∂Σ̂
. Moreover, ρΣ̂ ◦ τΣ,Σ′;∂Σ̂

restricts to a bilinear pairing (·, ·)Σ : HΣ ×HΣ′ → C such that 〈·, ·〉Σ = (ιΣ(·), ·)Σ.

(T5a) Let M1 and M2 be regions and M := M1 ∪ M2 be their disjoint union. Then ∂M =

∂M1∪∂M2 is also a disjoint union and τ∂M1,∂M2;∂M (H◦∂M1
⊗H◦∂M2

) ⊆ H◦∂M . Moreover, for

all ψ1 ∈ H◦∂M1
and ψ2 ∈ H◦∂M2

ρM ◦ τ∂M1,∂M2;∂M (ψ1 ⊗ ψ2) = ρM1(ψ1)ρM2(ψ2) . (5.1)

(T5b) Let M be a region whose boundary decomposes into a disjoint union ∂M = Σ1 ∪ Σ ∪ Σ′,

where Σ′ is a copy of Σ. Let M1 denote the gluing of M with itself along Σ, Σ′ and

suppose that M1 is a region. Note ∂M1 = Σ1. Then, τΣ1,Σ,Σ′;∂M
(ψ ⊗ ξ ⊗ ιΣ(ξ)) ∈ H◦∂M

for all ψ ∈ H◦∂M1
and ξ ∈ HΣ. Moreover, for any ON-basis {ξ}i∈I of HΣ, we have for all

ψ ∈ H◦∂M1

ρM1(ψ) · c(M ; Σ,Σ′) =
∑
i∈I

ρM ◦ τΣ1,Σ,Σ′;∂M
(ψ ⊗ ξi ⊗ ιΣ(ξi)) , (5.2)

where c(M ; Σ,Σ′) ∈ C \ {0} is called the gluing anomaly factor and depends only on the

geometric data.

The requirements formulated in the axioms ensure that all the tools we need for the prediction

of experimental situations are at hand.

5.2 Probability interpretation and generalized Born rule

As explained above in the standard formulation of QFT probabilities arise as the squared modulus

of transition amplitudes. For instance, the probability for the transition of the system under a

time evolution U from the state ψt1 at an instance of time t1 to ψ2 at an instance of time
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t2 is given as P (ψ1, ψ2) = |ρ(ψ1, ψ2)|2 = |〈ψ2, U(t2, t1)ψ1〉|2. This probability is a conditional

probability in the sense that it gives the probability to obtain the system in the state ψ2 at t2

given that it was in the state ψ1 at t1. In an experimental situation, we can say that ψ1 encodes

the knowledge about the preparation and ψ2 encodes the knowledge about the measurement.

This is now generalized to the GBF case the following way: Given a spacetime region M prepa-

ration and measurement are encoded via specifying closed subspaces S and A of the boundary

Hilbert space H∂M respectively. Then, the probability to find the system in a state in A given

that it is prepared in a state in A is given as

P (A|S) :=
||ρM ◦ PS ◦ PA||2

||ρM ◦ PS ||2
, (5.3)

where PS and PA are the orthogonal projectors onto the subspaces S and A respectively. For

the expression in (5.3) to be meaningful, the composed map ρM ◦ PS must be continuous on

H∂M and non-vanishing at least on an open subset of H∂M . These conditions present of course

a restriction on the possible choices for S, but are sufficiently restrictive to obtain a probability

interpretation without imposing an impossible situation. If S fits these requirements, ρM ◦PS is

an element of the dual Hilbert space H∗∂M and the norm || · || is the one on H∗∂M . The identity

in (5.3) is called the generalized Born rule4.

From (5.3), we recover the probability of the standard formulation as follows: Restricting the

possible choices of A to subsets of S - which means that we only ask questions that take fully

into account what we already know about the state of the system - we find that (5.3) becomes

P (A|S) =
||ρM ◦ PA||2

||ρM ◦ PS ||2
. (5.4)

Starting from an orthonormal basis in A which we extend first to an orthonormal basis of S we

obtain after another extension an orthonormal basis {ξi}i∈N of H∂M . Using Riesz’ Theorem we

find that the element of ψρ,A ∈ H∂M that corresponds to the dual element ρM ◦PA via the inner

product on H∂M is given as

ψρ,A =
∑
ξi∈A

ρM (ξi)ξi , (5.5)

and analogously for ρM ◦ PS . The norm of ρM ◦ PA in H∗∂M can then be written as the norm of

ψρ,A in H∂M and we can rewrite the expression in Equation (5.4) as

P (A|S) =

∑
ξj∈A |ρM (ξj)|2∑
ξi∈S |ρM (ξi)|2

. (5.6)

Now, let us consider a region M with boundary ∂M = Σ1 ∪Σ2 with Σ1 and Σ2 disjoint Cauchy

hypersurfaces that are part of a foliation of the spacetime M parameterized by t. In that case

we use the isometric isomorphism of axiom (T2) to identify the boundary Hilbert space H∂M
with HΣ1⊗̂HΣ2

. Let us assume further that we are given a unitary map U(t2, t1) such that

4For a much more elaborate introduction of the probability interpretation of the GBF we direct the interested
reader to [117].



56 CHAPTER 5. INTRODUCTION TO THE GENERAL BOUNDARY FORMULATION

ρM (ψ1⊗ ι(ψ2)) = 〈ψ2, U(t2, t1)ψ1〉Σ2 . We will explain in Section 5.8 more precisely what unitary

evolution means in the GBF framework.

Now, we want to know the probability for the transition from the normalized state ψ1 ∈ HΣ1 to

the normalized state ψ2 ∈ HΣ2 . Hence, we set S = {ψ1 ⊗ ξ| ξ ∈ HΣ2
} and A = {ψ1 ⊗ ι(ψ2)} and

we obtain

P (A|S) =
|ρM (ψ1 ⊗ ι(ψ2))|2∑

ξi∈S |ρM (ξi)|2
= |〈ψ2, U(t2, t1)ψ1〉Σ2 |2 , (5.7)

which recovers the standard expression for the transition amplitude P (ψ1, ψ2).

5.3 Observable maps and expectation values

Beside transition amplitudes, expectation values of observables are central elements of the stan-

dard formulation of QFT to compare the results of the theory with experiments. Assuming that

the system is in the state ψ, the expectation value for a measurement of an observable Ô : H → H
is given as 〈Ô〉 = 〈ψ, Ôψ〉. In the GBF, this definition is generalized in a way more closer to

algebraic quantum field theory, where observables are always associated with open subsets of

spacetime. These definitions are again given in an axiomatic form [61, 64]. We present these

axioms here for the sake of completeness although we will only use them implicitly by using

results derived from them.

(O1) Associated to each spacetime region M is a real vector space OM of linear maps H◦∂M → C,

called observable maps. In particular, ρM ∈ OM .

(O2a) Let M1 and M2 be regions and M = M1 ∪M2 be their disjoint union. Then, there is an

injective bilinear map � : OM1 × OM2 ↪→ OM such that for all O1 ∈ OM1 and O2 ∈ OM2

and ψ1 ∈ H◦∂M1
and ψ2 ∈ H◦∂M2

,

O1 �O2(ψ1 ⊗ ψ2) = O1(ψ1)O2(ψ2). (5.8)

This operation is required to be associative in the obvious way.

(O2b) Let M be a region with whose boundary decomposes into a disjoint union ∂M = Σ1∪Σ∪Σ′

and M1 given as in (T5b). Then, there is a linear map �Σ : OM → OM1 such that for all

O ∈ OM and any orthonormal basis {ξi}i∈I of HΣ and for all ψ ∈ H◦∂M1
,

�Σ(O)(ψ) · c(M ; Σ,Σ′) =
∑
i∈I

O(ψ ⊗ ξi ⊗ ιΣ(ξi)). (5.9)

This operation is required to commute with itself and with (O2a) in the obvious way.

The gluing operations defined in (O2a) and (O2b) as well as their iterations and combinations

are referred to in the literature as compositions of observables or the combination of measure-

ments [64]: “Combination is here to be understood as in classical physics, when the product of

observables is taken.”.
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In the GBF, expectation values for operators are given with respect to a closed subset S ⊆ H∂M
encoding the knowledge about the system. We have

〈O〉S :=
〈ρM ◦ PS , O〉
||ρM ◦ PS ||2

. (5.10)

For this expression to be meaningful, we need again that ρM ◦PS is a continuous map that differs

from zero. Setting O = ρM ◦PA and assuming that A ⊆ S we obtain Equation (5.3) as a special

case of Equation (5.10).

We recover the expression 〈O〉Σ = 〈ψ, Ôψ〉Σ of the standard formulation of QFT when considering

an empty region Σ̂ with ∂Σ̂ = Σ ∪ Σ′ where Σ′ is another copy of Σ. Assuming a unitary time

evolution U : HΣ → HΣ′ , we find that H∂Σ̂ = HΣ⊗̂HΣ′ . For every ψ ∈ HΣ and ψ′ ∈ HΣ′ , we set

O(ψ ⊗ ι(ψ′)) = 〈ψ′, Ôψ〉Σ . (5.11)

The preparation of the system in the state ψ corresponds to the subset S = {ψ⊗ ι(ξ)| ξ ∈ HΣ2}.
From axiom (T3x) we know that in the case of an empty region, we can express the amplitude

via the inner product and find

ρΣ̂ ◦ PS(ξ ⊗ ι(ψ′)) = 〈ψ′, Pψξ〉Σ (5.12)

where Pψ is the orthogonal projection onto ψ. Let {ξi}i∈N be an orthonormal basis in HΣ chosen

such that ξ1 = ψ then we get

||ρΣ̂ ◦ PS ||
2 =

∞∑
i,j=1

|ρΣ̂ ◦ PS(ξi ⊗ ι(ξj))|2 =
∞∑

i,j=1

|〈ξj , Pψξi〉Σ|2 = 1 . (5.13)

On the other hand, we find that

〈ρΣ̂ ◦ PS , O〉Σ =
∞∑

i,j=1

ρΣ̂ ◦ PS(ξi ⊗ ι(ξj))O(ξi ⊗ ι(ξj))

=

∞∑
i,j=1

〈Pψξi, ξj〉Σ〈ξj , Ôξi〉Σ = 〈ψ, Ôψ〉Σ . (5.14)

The last ingredient we need to define is a vacuum state, in analogy to the standard formulation.

However, we will postpone this step to a point after the introduction of a particular representation

of the core axioms called the holomorphic representation. Then, we will see much more easily

how the vacuum state is introduced and which properties it has to fulfill. In the following, we

will start the introduction of the holomorphic representation of GBF by deriving the symplectic

geometry of the phase space of scalar field theories. We restrict our consideration to scalar field

theories since we will only deal with those in this thesis. The GBF can be applied to a much

wider range of field theories5.

5See for example [58] and [62] for the GBF of two dimensional Yang-Mills or four dimensional fermionic field
theory, respectively.
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5.4 Symplectic geometry of scalar field theories

In this section we will introduce the classical phase space structure of scalar field theories. We

will introduce the phase space as a symplectic vector space which is not particularily related to

the GBF (this perspective is widely used in the literature [118]) but will be convienient for the

implementation of the field quantization in the next section. Let us assume that we are given an

action

SM (φ) :=

∫
M

Λ(φ, ∂µφ, . . . , ∂µ1 . . . ∂µrφ, x) , (5.15)

for the scalar field φ in a region M ⊆M where Λ(φ, ∂µφ, . . . , ∂µ1 . . . ∂µrφ, x) is the n-form

Λ(φ, ∂µφ, . . . , ∂µ1 . . . ∂µrφ, x) = Λν1···νn(φ, ∂µφ, . . . , ∂µ1 . . . ∂µrφ, x)dxν1 ∧ · · · ∧ dxνn , (5.16)

containing the Lagrangian density Λν1···νn depending on the field φ and all its derivatives reaching

the order r and the integral measure. Performing a variation φ → φ + sδφ, where s is a small,

real parameter, we find that to first order in s, we can write Λ as a sum of an exact n-form dj

and a term depending on δφ but not on any derivative of δφ. We obtain

δSM (φ) := s

∫
M

(dj + FE−Lδφ) (5.17)

where the term FE−L is the n-form given in coordinates as

FE−L = (FE−L)ν1···νndx
ν1 ∧ · · · ∧ dxνn , (5.18)

with components

(FE−L)ν1···νn =
∂Λν1···νn
∂φ

+

n∑
i=1

(−1)i∂µ1 . . . ∂µi
∂Λν1···νn

∂(∂µ1 . . . ∂µiφ)
= 0 , (5.19)

which are to the Euler-Lagrange equations. The (n− 1)-form j is called the symplectic current

[119] and is defined as

j = jµµµ1...µn−1
dxµ1 ∧ · · · ∧ dxµn−1 (5.20)

where the components

jµν1...νn =
∂Λν1...νn

∂(∂µφ)
δφ+

n−1∑
i=1

(
∂Λν1...νn

∂(∂µ1 . . . ∂µi∂µφ)
+ λµ1...µiµ

ν1...νn

)
∂µ1 . . . ∂µiδφ (5.21)

with

λµ1...µj
ν1...νn = −∂ν

(
∂Λν1...νn

∂(∂µ1 . . . ∂µj∂νφ)
+ λµ1...µjν

ν1...νn

)
(5.22)

for j < r and λµ1...µj = 0 for j ≥ r form a covariant tensor field that is completely antisymmetric

in the lower indices. We denote by LΣ the real vector space of germs6 at Σ of solutions to the

6For functions f and g on a neighborhood U0 of Σ in M, define f ∼Σ g if there is a neighborhood U ⊆ U0 of
Σ such that f |U = g|U . The equivalence classes of ∼Σ are called germs at Σ. In particular, f ∼Σ g implies that
all derivatives of f and g at Σ are equal.



5.4. SYMPLECTIC GEOMETRY OF SCALAR FIELD THEORIES 59

Euler-Lagrange equations (5.19). By identifying the variation δφ with an element of LΣ, we

obtain the symplectic potential associated with a hypersurface Σ

(θΣ)φ (δφ) :=

∫
Σ
j . (5.23)

From the symplectic potential we obtain the bilinear map

[·, ·]Σ : LΣ × LΣ → R, [φ, ξ]Σ := (θΣ)φ(ξ) , (5.24)

and an anti-symmetric bilinear map by anti-symmetrization

ωΣ : LΣ × LΣ → R, ωΣ(φ, φ′) =
1

2
[φ, φ′]Σ −

1

2
[φ′, φ]Σ , (5.25)

which we call the symplectic form. We assume in the following that ωΣ is always non-degenerate.

For a hypersurface decomposing into a disjoint union of hypersurfaces, Σ = Σ1 ∪ · · · ∪ Σn we

then have that LΣ = LΣ1 ⊕ · · · ⊕LΣn , and θΣ = θΣ1 + . . .+ θΣn . For a region M ⊆M we define

ω∂M as the symplectic form associated to the boundary ∂M of M . Furthermore, we define LM

as the vector space of global solutions to the Euler-Lagrange equations in the region M .

To give an example, let us consider a free Klein-Gordon field on a Lorentzian spacetime (M, g).

In this case we have

Λ(φ, ∂µφ, . . . , ∂µ1 . . . ∂µnφ, x)

= 1
2

√
|det g(x)| εµ1...µndx

µ1 ∧ · · · ∧ dxµdn
(
gµν(x)∂µφ(x)∂νφ(x)−m2φ2(x)

) (5.26)

where εµ1...µn is the totally antisymmetric Levi-Cevita symbol and we find that the symplectic

potential is given as

(θΣ)φ (δφ) =

∫
dσµ(y) (δφ gµν∂νφ) (X(y)) (5.27)

where dσ is the integral measure on Σ given as

dσµ(y) =
√
| det g(X(y))| εµµ1...µn−1X

µ1
,a1(y) · · ·Xµn−1

,an−1(y) dya1 ∧ · · · ∧ dyan−1

= ε
√
| det g(n−1)(X(y))| dy1 · · · dyn−1 nµ , (5.28)

where n is the unit normal covector field to Σ with positive orientation, X the embedding function

defining the hypersurface Σ in M and g(n−1) the induced metric

g
(n−1)
ab = gµνX

µ
,aX

ν
,b , (5.29)

on Σ, where X,a denotes the partial derivative ∂X
∂ya

and ε = +1 or ε = −1 (depending on the

orientation of Σ with respect to the chosen coordinate system). The symplectic form ω∂M for a

region M is then given as

ω∂M (φ, φ′) =
1

2

∫
∂M

dσµ(y)
(
gµν

(
φ∂νφ

′ − φ′∂νφ
))

(y) . (5.30)
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for elements φ′, φ ∈ L∂M . By partial integration, we find that for solutions φ and φ′ to the

Euler-Lagrange equations, the symplectic form vanishes.

In the first part of this thesis, I will restrict all the applications of the GBF to the case of the free

Klein-Gordon field. Although the theory I will present in the following is as general as described

above, this special case suffices to show the conceptual questions that arise when abandoning the

metric from the framework.

5.5 Holomorphic quantization of symplectic geometries

So far, two quantization schemes have been implemented in the GBF which transform a classical

field theory into a quantum field theory that satisfies the axioms of Section 5.1: the Schrödinger

representation derived from the Feynman path integral quantization prescription [54–58, 117]

and the holomorphic representation [59] which is a quantization scheme inspired by geometric

quantization [118]. In [61] it was shown that their is a one-to-one correspondence between the

two quantization schemes which justifies the term “representation” for them. In this thesis I will

use the holomorphic representation only which I will introduce in the following.

To obtain a quantum field theory from the symplectic geometry as we derived it in Section

5.1, we need an additional datum. In the holomorphic representation, this is the choice of a

compatible and positive complex structure, i.e. a linear map JΣ : LΣ → LΣ such that J2
Σ = −idΣ,

ωΣ(JΣ·, JΣ·) = ωΣ(·, ·) and ωΣ(·, JΣ·) positive definite. That turns LΣ into a complex Hilbert

space and allows the definition of coherent states that form the dense subset required in axiom

(T4). It was shown in [61] that the choice of complex structure corresponds to the choice

of a vacuum state in the Schrödinger representation which is why we will use the two terms

synonymously throughout this thesis.

Holomorphic quantization is closely related to the canonical quantization prescription known

from quantum field theory textbooks in the following sense: Canonical quantization proceeds

from the classical phase space by expanding the classical solutions in Fourier modes. The Fourier

modes are then divided into positive and negative frequency modes and the coefficients in front of

the positive frequency modes are considered to be particle creation operators and the coefficients

in front of the negative energy modes as annihilation operators. Here, the notion of positive

and negative frequency is usually meant with respect to the spectrum of a nowhere vanishing,

timelike, hypersurface orthogonal Killing vector field ∂
∂t that acts on the modes as a derivative

operator. Clearly, such a vector field does not exist for generic hypersurfaces Σ, and certainly not

if the hypersurface contains a timelike direction. But, especially this is the case we would like to

consider in the GBF. In the holomorphic quantization prescription, we define the complexification

LC
Σ as the set of all complex linear combinations of elements of LΣ and pick a subset PΣ ⊆ LC

Σ

(like the set of positive energy modes in canonical quantization), that must fulfill the following

properties

• PΣ is a complex polarization, which means that for the symplectic complement P⊥Σ , defined
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as the set of all ξ ∈ LC
Σ such that ωΣ(ξ, η) = 0 for all η ∈ PΣ, we have P⊥Σ = PΣ (that is,

PΣ is Lagrangian).

• PΣ is a Kähler polarization, that is PΣ is a complex polarization such that PΣ ∩PΣ = {0},
where the bar denotes complex conjugation in the usual sense.

In this case, we can write LC
Σ = PΣ ⊕ PΣ. Complex Kähler polarizations are in one-to-one

correspondence with complex structures compatible to ωΣ. We say JΣ : LΣ → LΣ is a complex

structure compatible with ωΣ if J2
Σ = −idΣ and ωΣ(JΣ·, JΣ·) = ωΣ(·, ·). Given such a complex

structure, define first its extension to the complexification as

JΣ(φR + iφI) = JΣφR + iJΣφI (5.31)

for all φR and φI in LΣ. Then, define the subset

PΣ := {φ− iJΣφ, φ ∈ LΣ} = {φ ∈ LC
Σ|JΣφ = iφ} .

PΣ and its complex conjugate PΣ = {φ + iJΣφ, φ ∈ LΣ} = {φ ∈ LC
Σ|JΣφ = −iφ} are complex

polarizations - called the holomorphic and the antiholomorphic polarization - which can be seen

using the compatibility condition above in the following way: let φ1 and φ2 be in PΣ, then

ωΣ(φ1, φ2) = ωΣ(JΣφ1, JΣφ2) = −ωΣ(φ1, φ2) , (5.32)

which means that PΣ ⊆ P⊥Σ . Let us assume further that for generic φ1 ∈ LΣ the element φ2 ∈ LΣ

is such that ωΣ(φ1, φ2) 6= 0 which always can be found since ωΣ is non-degenerate. Then, we

find that φ1 − iJΣφ1 ∈ PΣ and φ2 + iJΣφ2 ∈ PΣ and

ωΣ(φ1 − iJΣφ1, φ2 + iJΣφ2) = 2ωΣ(φ1, φ2) + 2iωΣ(φ1, JΣφ2) 6= 0 ,

from which we conclude that PΣ = P⊥Σ . Furthermore, PΣ and its complex conjugate PΣ fulfill

the Kähler property PΣ ∩ PΣ = {0} by definition. On the other hand, if PΣ and PΣ are given

Kähler polarizations, we can decompose any φ ∈ LC
Σ uniquely into φ = ψ + ψ′ with ψ ∈ PΣ and

ψ′ ∈ PΣ. Then JΣ defined by JΣφ := iψ − iψ′ is a complex structure compatible with ωΣ. This

can be seen the following way: let φ1 and φ2 be in LC
Σ then

ωΣ(JΣφ1, JΣφ2) = ωΣ(JΣ(ψ1 + ψ′1), JΣ(ψ2 + ψ′2)) = ωΣ(iψ1 − iψ′1, iψ2 − iψ′2)

= ωΣ(ψ1, ψ
′
2) + ωΣ(ψ′1, ψ2) = ωΣ(ψ1 + ψ′1, ψ2 + ψ′2) = ωΣ(φ1, φ2) .

Given JΣ, we have a canonical isomorphism π : PΣ → LΣ, π(ψ) = ψ + ψ̄ that identifies PΣ and

LΣ, the latter now regarded as a complex vector space. The inverse is explicitly given in terms

of the complex structure as

π−1 =
1

2
(1− iJΣ) . (5.33)

We say that JΣ, or equivalently PΣ, is positive if gΣ(·, ·) := 2ωΣ(·, JΣ·) is positive definite. In the

following, unless otherwise stated, we shall always assume J to be a positive compatible complex

structure. If JΣ is given, then completion with respect to the bilinear map

{φ, η}Σ := gΣ(φ, η) + 2iω(φ, η) ∀φ, η ∈ LΣ (5.34)
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turns the real vector space LΣ into a complex Hilbert space H1
Σ = (LΣ, {·, ·}Σ), where multipli-

cation with i is given by applying JΣ. In the following we will identify LΣ with H1
Σ and only talk

about LΣ. Later in this section we will find that LΣ = H1
Σ can be identified with the one particle

sector of the Hilbert space HΣ of holomorphic quantization required in axiom (T1) which is now

constructed as the separable complex Hilbert space given by HΣ := L2
hol(L̂Σ, dµΣ). The latter is

the space of square-integrable holomorphic functions7 on L̂Σ with respect to a certain Gaussian

measure dνΣ, and the inner product is defined as

〈ψ′, ψ〉Σ :=

∫
L̂Σ

ψ(φ)ψ′(φ)dνΣ(φ). (5.35)

Here, L̂Σ is a certain extension of LΣ that was introduced by Oeckl in [59] to deal with technical

difficulties which arise because LΣ is infinite-dimensional; L̂Σ is the algebraic dual of the topo-

logical dual of LΣ. In this thesis, I will use the results by Oeckl et al. without presenting the

constructions in detail. In the following, we will use LΣ equivalently for L̂Σ. The measure dνΣ

can be thought of as a mathematically rigorous version of the heuristic expression

〈ψ′, ψ〉Σ =

∫
LΣ

ψ(φ)ψ′(φ) exp

(
−1

2
gΣ(φ, φ)

)
dµΣ(φ). (5.36)

where dµΣ is a translation invariant measure which, in fact, does not exist. The reader interested

in a deeper understanding of the mathematical details is recommended to read [59].

Now, the amplitude map ρM of axiom (T4) for a region M with boundary ∂M is given by

ρM (ψ) =

∫
LM̃

ψ(φ)dνM̃ (φ) (5.37)

where ψ ∈ H∂M , LM̃ ⊂ L∂M is the subspace of global solutions on M restricted to ∂M , and νM̃ is

the Gaussian measure constructed in [59] analogously to dνΣ. To construct the involution of ax-

iom (T1b) relating oppositely oriented manifolds explicitly, we can take HΣ := L2
antihol(LΣ, dµΣ),

that is, the antiholomorphic functions. When viewed as functions on LΣ we then find that

ιΣψ := ψ . (5.38)

for all ψ ∈ HΣ. We will see in the next section, when considering the explicit construction of

coherent states, that we can identify L2
antihol(LΣ, dµΣ) with L2

hol(LΣ, dµΣ), where LΣ is the same

real linear space as LΣ, but equipped with the structures ωΣ = −ωΣ and JΣ = −JΣ.

5.6 Coherent States

When dealing with the GBF, coherent states are of crucial importance. This is because their

finite linear combinations form a dense subset in the Hilbert space H∂M 8. Explicit expressions

for results of amplitude maps as well as of observable maps, that will be introduced later, where

7We say a function f : L→ C is holomorphic if it is continuous, bounded on every ball and holomorphic in the
usual sense at every point of L.

8For the proof see Theorem 3.15 of [61]
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derived for coherent states in [59] and [61] respectively. We can use these expressions to calculate

the amplitudes and expectation values of observables for all states in H∂M .

For every given element ξ ∈ LΣ, we obtain a coherent state Kξ ∈ HΣ as the holomorphic function

Kξ(φ) := exp

(
1

2
{ξ, φ}Σ

)
∀φ ∈ LΣ . (5.39)

A crucial property of the coherent states is that they have the reproducing kernel property

〈Kξ, ψ〉Σ = ψ(ξ) ∀ψ ∈ HΣ (5.40)

with respect to the inner product defined in Equation (5.35).

If Σ decomposes into n disjoint components, Σ = Σ1 ∪ · · · ∪ Σn, then for any element ξ ∈ LΣ

there exists a unique decomposition ξ = ξ1 + · · ·+ ξn with ξi ∈ LΣi . Then we have that

Kξ = Kξ1 ⊗ · · · ⊗Kξn =: K(ξ1,...,ξn) , (5.41)

because the sesquilinear form {·, ·} decomposes for any φ ∈ LΣ as {ξ, φ}Σ =
∑

i{ξi, φi}Σi .
With the reproducing kernel property we find that also the inner product (5.35) factorizes as

〈Kξ,Kξ′〉Σ =
∏
i〈Kξi ,Kξ′i

〉Σi . Recalling that the coherent states form a dense subset in the

Hilbert space HΣ the map τΣ1,...,Σn;Σ : HΣ1⊗̂ · · · ⊗̂HΣn → HΣ required in axiom (T2) becomes

just an identification of Cauchy series. Then, also axiom (T2b) follows immediately from Equa-

tion (5.38). If Σ decomposes into two components, Σ = Σ1 ∪ Σ̄2, then for any ξ ∈ LΣ1 and

ξ′ ∈ LΣ2 , we obtain with (5.38) the useful identity

K(ξ,ξ′) = Kξ ⊗Kξ′ ∈ HΣ . (5.42)

Now, we can also use the coherent states to prove that the action of the involution ι leads to the

identification JΣ = −JΣ. If we reverse the orientation of Σ, Σ → Σ, then Kξ is mapped to the

antiholomorphic function ιΣKξ = Kξ. When comparing this expression with the RHS of (5.39)

we see that Kξ is the same function as Kξ defined with ωΣ = −ωΣ and gΣ = gΣ. Therefore,

JΣ = −JΣ follows as

{ξ, φ}Σ = gΣ(ξ, φ)− iωΣ(ξ, φ) = gΣ(ξ, φ) + iωΣ(ξ, φ) = {ξ, φ}Σ . (5.43)

As explained above, the main advantage of using coherent states is the explicit expression for

the amplitude derived in [59]. It is given as

ρM (Kτ ) = exp

(
1

4
g∂M (τR, τR)− 1

4
g∂M (τ I , τ I)− i

2
g∂M (τR, τ I)

)
, (5.44)

where τ = τR + J∂Mτ
I with τR, τ I ∈ LM̃ . This decomposition is always uniquely possible since

L∂M = LM̃ ⊕ J∂MLM̃
9. Since the expression in (5.44) is well defined and the coherent states

form a dense subset in the Hilbert space H∂M we find that the requirement in axiom (T4) is

fulfilled.

9For the proof see Proposition 4.2 in [59]
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Proofs for the validity of the axioms (T3x), (T5a) and (T5b) in the holomorphic representation

where given in [59]. Axiom (T3x) is proven using the identity of the measure defined for the

amplitude map and the inner product for the empty region in Axiom (T3x). Axiom (T5a) follows

there directly from the construction of the measure dνM̃ which becomes a product measure for

disjoint regions. In contrast, to prove axiom (T5b), another assumption must be made namely

the integrability of the map ξ 7→ ρM (K0 ⊗Kξ ⊗ ιΣ(Kξ)) with respect to (L̂Σ, νΣ). We will not

bother about this additional condition in this thesis.

5.7 Vacuum states

For every hypersurface Σ there is a distinguished coherent state: The state ψΣ;0 = K0 = 1, the

constant function with value 1 on LΣ, which is the coherent state associated with the vector

0 ∈ LΣ. It fulfills the following properties usually called vacuum axioms in the literature [59]:

• (V1) For each hypersurface Σ there is a distinguished state ψΣ;0 ∈ HΣ, called the vacuum

state.

• (V2) The vacuum state is compatible with the involution. That is, for any hypersurface Σ,

ψΣ;0 = ιΣ(ψΣ;0).

• (V3) The vacuum state is compatible with decompositions. Suppose the hypersurface Σ

decomposes into components Σ1 ∪ · · · ∪ Σn. Then ψΣ;0 = τΣ1,...,Σn;Σ(ψΣ1;0 ⊗ · · · ⊗ ψΣn;0).

• (V5) The amplitude of the vacuum state is unity. That is, for any regionM , ρM (ψ∂M ;0) = 1.

This list reproduces the ordering of [117]. The axiom (V4) appearing there is redundant here

because it is already implied by (V5) when using the construction of empty regions. The require-

ments posed in the vacuum axioms lead to properties of the vacuum state that one associates in

the standard formulation of QFT with the vacuum state. For instance, from (V1), (V2) and (V5)

together with (T3x) follows that ψΣ;0 is normalized. Furthermore, a state fulfilling the above

requirements is stable under unitary evolution in the sense of the following proposition that was

proven in [59]:

Proposition 5.7.1. [Proposition 2.1. of [59]] Let M be a region such that its boundary decom-

poses into a disjoint union ∂M = Σ ∪ Σ′. Assume moreover that there is a unitary operator

U : HΣ → HΣ′ such that

ρM ◦ τΣ,Σ′;∂M (ψ ⊗ ιΣ′(ψ′)) = 〈ψ′, Uψ〉Σ′ ∀ψ ∈ HΣ, ψ
′ ∈ HΣ′ . (5.45)

Then, UψΣ;0 = ψΣ;0.

Proof: Since ψΣ;0 is normalized, so is UψΣ;0. But its inner product with the also normalized

state ψΣ′;0 is 1. So it must be identical to ψΣ′;0.�

From this proposition we can draw another conclusion. For each pair of hypersurfaces Σ and Σ′

which are given such that there exist a region M such that ∂M = Σ ∪ Σ′ and an evolution map
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U connecting the two hypersurfaces as in proposition 5.7.1 given a vacuum state on Σ we obtain

a vacuum state on Σ′ via U . Hence, given a spacetime possessing a foliation of hypersurfaces Σt

and an evolution U with respect to this foliation it suffices to give a vacuum state ψΣt0 ,0
on one

hypersurface Σt0 to obtain a vacuum state on every hypersurface of the foliation. This brings us

directly to the question of when a unitary evolution map U exists and how it can be constructed

in the GBF.

5.8 Time evolution and Unitarity

Let M be a region such that ∂M = Σ ∪ Σ′ is the disjoint union of two hypersurfaces. We can

consider canonical projections r : LM̃ → LΣ and r′ : LM̃ → LΣ′
10. Assume these maps are

homeomorphisms. The composition T := r′ ◦ r−1 : LΣ → LΣ′ maps solutions at Σ into solutions

at Σ′, hence it can be seen as a generalized notion of time evolution. We call T unitary if

JΣ ◦ T = T ◦ JΣ′ . (5.46)

In [59] it was shown that if T is unitary, then there is a unitary map U : HΣ → HΣ′ , Ψ 7→ Ψ◦T−1

fulfilling Equation (5.45). In particular we have

UKΣ,ξ = KΣ′,T ξ . (5.47)

Given a map T we can also say that the complex structure J∂M is compatible with the evolution

if Equation (5.46) is fulfilled. We call a complex structure that is compatible with the evolution T

giving rise to a unitary evolution a unitary complex structure. A generalization of this definition

of unitarity of complex structures can be given that avoids the assumption of the existence of

the evolution map T . Using the reproducing kernel property of the coherent states we can define

a map U−1 : HΣ′ → HΣ such that (5.45) is fulfilled as [59]

(U−1Ψ)(φ) := ρM (KΣ,φ ⊗Ψ) . (5.48)

for all Ψ ∈ HΣ′ . We can extend the subspace LM̃ to the complexification LC
M̃
⊂ LC

∂M
, such

that for ξ ∈ LC
M̃

we have Re(ξ), Im(ξ) ∈ LM̃ . We then have that if (5.46) holds every element

ξ ∈ LC
M̃

that projects to a −i eigenfunction of JΣ, meaning JΣr(ξ) = −ir(ξ), projects to a −i
eigenfunction on Σ′, JΣ′r

′(ξ) = −ir′(ξ), and vice versa. Reversely we will say that a complex

structure is “unitary” exactly if this condition is satisfied.

If furthermore the maps r and r′ are homeomorphisms we can identify LC
M̃

with LC
Σ and LC

Σ′ . If

the complex structure then is unitary in the above sense we find that JΣ′ ◦ T = T ◦ JΣ since LC
M̃

is the set of all (ξ, T ξ) ∈ LC
∂M .

10For φ ∈ LM̃ a global solution on M , r(φ) is the germ of φ at Σ, in other words r(φ) is obtained by forgetting
φ everywhere but in a small neighborhood around Σ. Same for r′.
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5.9 Quantization of Weyl observables

The last step in the quantization process is the quantization of observables. An extremely useful

class of observables are those given as

W (φ) = exp(iD(φ)) (5.49)

where D is an element of the set of linear observables Clin
M associated to the region M . Observables

of the type (5.49) are called Weyl observables in the literature. They have the advantage that

every polynomial observable can be constructed from their derivatives. Hence, by quantizing

Weyl observables we obtain the quantization of all polynomial observables and in particular

linear observables. The quantization of Weyl observables was developed in [61] using two different

quantization schemes the Feynman quantization and the Berezin-Toeplitz quantization. We will

present the basic ideas and results for both schemes in the following. The observable map for an

observable O will be denoted as ρOM in the Feynman quantization and as ρJOIM in the Berezin-

Toeplitz quantization.

Feynman quantization

Using the path intregral we can immediately write down a heurist expression for the observable

map of an observable O(φ) as

ρOM (ψ) =

∫
KM

Ψ(φ|∂M )O(φ) exp(iSM (φ))dµ(φ) . (5.50)

where Ψ is a wave functional in the path integral formulation and SM is the action. As it is

widely known this expression is mathematically not well defined due to the non-existence of the

measure dµ. However, in [60] and [61] expressions like (5.50) was given meaning establishing

the Schrödinger representation of GBF for linear and affine field theories. So let us carry on by

considering W to be a Weyl observable as in (5.49). Then, we find that the path integral in

(5.50) can be rewritten as the path integral

ρWM (ψ) =

∫
KM

Ψ(φ|∂M ) exp(iSWM (φ))dµ(φ) , (5.51)

where SDM (φ) = SM (φ) +D(φ) which can be considered as an action for an affine field theory.

In [61] this insight was taken seriously by the author. Using the Schrödinger representation of

the GBF, the observable map ρWM for a given Weyl observable W = exp(iD) with respect to the

action SM was defined as the amplitude map with respect to the action SDM . This construction

gave rise to Proposition 4.3 in [61]. I will give the result in the following in a slightly reformulated

way using the coherent states defined in (5.39).

Proposition 5.9.1 ((Proposition 4.3 of [61])). Let M be a region, D ∈ ClinM , W := exp(iD), and

τ ∈ L∂M . We define τ̂ ∈ LC
∂M as τ̂ := τR − iτ I, where τ = τR + J∂Mτ

I and τR, τ I ∈ LM̃ . Then

we obtain that

ρWM (Kτ ) = ρM (Kτ )W (τ̂) ρWM (K0) . (5.52)
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where

ρWM (K0) = exp

(
i

2
D(ηD)− 1

2
g∂M (ηD, ηD)

)
, (5.53)

and ηD is the unique element of J∂MLM̃ fulfilling the condition D(ξ) = 2ω∂M (ξ, ηD) for all

ξ ∈ LM̃ .

It follows that

ρWM (K0) = exp

(
i

2
D(ηD − iJ∂MηD)

)
, (5.54)

and we find that ηD − iJ∂MηD lies in the polarization P∂M which means that a solution ψF in

M that induces ηD− iJ∂MηD on ∂M fulfills the generalized Feynman boundary conditions11, i.e.

(1 + iJ∂M )r∂M (ψF ) = 0 where r∂M is the map from LM to LM̃ introduced in Section 5.8.

Assume that there exists a scalar density ρ such that the Lagrangian density governing the

dynamics of the scalar field φ can be written as

Λ(φ, ∂µφ, . . . , ∂µ1 . . . ∂µrφ, x) = ρ(x)εµ1...µndx
µ1 ∧ · · · ∧ dxµnL(φ, ∂µφ, . . . , ∂µ1 . . . ∂µrφ, x) (5.55)

where L is a scalar function and ε is the total antisymmetric Levi-Cevita symbol in n dimensions.

We denote ρ as the volume density and define the volume measure

dV (x) := ρ(x)dxµ1 · · · dxµn (5.56)

Now, we can write down a certain class of Weyl observables W = exp(iD) where the linear

observable D is of the form

D(φ) =

∫
M
dV (x)µ(x)φ(x) (5.57)

with µ(x) a test function. Then, we conclude from the fact that ηD−iJ∂MηD fulfills the Feynman

boundary conditions that

(ηD − iJ∂MηD)(x) =

∫
M
dV (x)GJF (x, x′)µ(x′) (5.58)

holds for every test function µ(x) where GJF (x, x′) is the Feynman propagator (called like this

because it generates solutions fulfilling the generalized Feynman boundary conditions) with re-

spect to the complex structure J∂M . We obtain for a coherent state Kτ the operator amplitude

map

ρµM (Kτ ) = ρM (Kτ ) exp

(
i

∫
M
dV (x)µ(x)τ̂(x) +

i

2

∫
M
dV (x)dV (x′)µ(x)GJF (x, x′)µ(x′)

)
.

(5.59)

This expression is the GBF generalization of the generating functional known from the standard

formulation of QFT. In the framework of the GBF it was first derived in [71, 72] using the

Schödinger-Feynman representation of the GBF. Using the holomorphic representation it was

recovered in [61].

11See [120] for the Feynman boundary condition on spacelike hyperplanes in Minkowski.
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Unitary evolution

If the boundary of the region M decomposes as ∂M = Σ1∪Σ2 and the map T defined in Section

5.8 exists and is unitary, i.e. JΣ2
= T ◦ JΣ1 ◦ T−1 we have that τ̂ = τR − iτ I in (5.59) is given

explicitly as the complex solution

τ̂ = r−1
1

(
1

2
(1 + iJΣ1)τ1 +

1

2
(1− iJΣ1)T−1τ2

)
(5.60)

for all τ = (τ1, τ2) ∈ L∂M = LΣ1 × LΣ2
where r1 is the homeomorphism defined in Section 5.8.

With equations (5.40), (5.45) and (5.47) we can rewrite the expression for the operator amplitude

in (5.59) for the coherent state Kτ1 ⊗Kτ2 ∈ HΣ1 ⊗HΣ2
as

ρµM (Kτ1 ⊗Kτ2) = exp

(
1

2
{T (τ1), τ2}Σ2

)
exp

(
i

∫
M
dV (x)µ(x)τ̂(x)

)
×

× exp

(
i

2

∫
M
dV (x)dV (x′)µ(x)GJF (x, x′)µ(x′)

)
. (5.61)

To find an expression for GJF from (5.58) we have to find ηD. For this purpose, we first define

an orthonormal basis for PΣ1 . Let π : PΣ1 → LΣ1 be the canonical linear isomorphism, with

π(φ) = φ+ φ̄. We use this isomorphism to define an inner product on PΣ1 :

{·, ·}PΣ1
:= {π(·), π(·)}Σ1 . (5.62)

Using linearity of π and the fact that {·, ·}Σ1 is an inner product on LΣ1 , it is immediate to show

that {·, ·}PΣ1
is an inner product on PΣ1 . Now, assume that we have given an orthonormal basis

BPΣ1
of PΣ1 with respect to this inner product (5.62). We shall write BPΣ1

= {e+
ξ }ξ∈I for a

suitable index set I.

We find that ηD = J∂M (r1η, r2η) where J∂M = (JΣ1 ,−T ◦ JΣ1 ◦ T−1) and

η(x) :=

∫
dV (x′)µ(x′)

∑
σ∈I

(
e+
σ (x′)e−σ (x) + e−σ (x′)e+

σ (x)
)
. (5.63)

This can be seen by observing that every element ζ ∈ LM can be parameterized as

ζ =
∑
σ∈I

(
ζσe

+
σ (x) + c.c

)
and it follows that for all ζ, ζ ′ ∈ LM holds

{ζ, ζ ′}Σ1 = iωΣ1((1 + iJΣ1)ζ, (1− iJΣ1)ζ ′) =
∑
σ,σ′∈I

ζσζ
′
σ′4iωΣ1(e−σ , e

+
σ′)

=
∑
σ,σ′∈I

ζσζ
′
σ′{e+

σ , e
+
σ′}PΣ1

=
∑
σ∈I

ζσζ
′
σ .

Finally, we find that

2ω∂M (ζ, ηD) = g∂M (ζ, η) = 2gΣ1(ζ, η) = 2Re({ζ, η}Σ1)

=
∑
σ∈I

(
ζσησ + ζσησ

)
=

∫
dV (x)µ(x)ζ(x) = D(ζ) . (5.64)
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Having verified that Equation (5.63) holds we obtain that the left hand side in Equation (5.58)

becomes

(1− iJ∂M )ηD(x1, x2) = i(1− iJ∂M )(r1η, r2η)(x1, x2)

= 2i

∫
d4x′µ(x′)

∑
σ∈I

(e−σ (x′)e+
σ (x1), e+

σ (x′)e−σ (x2)) (5.65)

where x1 and x2 are coordinates in neighborhoods of Σ1 and Σ2 respectively. These are the

boundary conditions that the Feynman propagator GJF must fulfill. If now a foliation of the

region M exists such that M = [ξ1, ξ2]× Σ, we find that

GJF (x, x′) = 2i
∑
σ∈I

(θ(ξ(x′)− ξ(x))e+
σ (x)e−σ (x′) + θ(ξ(x)− ξ(x′))e−σ (x)e+

σ (x′)) , (5.66)

where θ is the Heaviside step function.

Berezin-Toeplitz quantization

The Berezin-Toeplitz quantization was introduced in the GBF in [64]. The amplitude map for

an observable O for this quantization scheme is given as

ρJOIM (ψ) :=

∫
LM̃

dνM̃ (φ)ψ(φ)O(φ) (5.67)

for every ψ ∈ H∂M . When applied to Weyl observables W = exp(iD) it was shown in [61] that

ρJWIM (Kτ ) = ρM (Kτ )W (τ̂) ρJWIM (K0) . (5.68)

where

ρJWIM (K0) = exp (−g∂M (ηD, ηD)) , (5.69)

and ηD is the unique element of J∂MLM̃ fulfilling the condition D(ξ) = 2ω∂M (ξ, ηD) for all

ξ ∈ LM̃ . We find that the results in (5.52) and (5.68) for the two quantization schemes differ

just by the expressions for the operator amplitude in the vacuum state which are related as

ρJWIM (K0) = |ρWM (K0) |2 . (5.70)

We will find in Section 6.1 that due to this difference the Unruh effect cannot be derived in

the Berezin-Toeplitz quantization although in the Feynman quantization it will turn out to be

present as a coincidence of expectation values of local observables.

5.10 Ladder Operators and one particle states

For the interpretation of the amplitudes appearing in the GBF it will turn out to be useful to

know the Fock space structure of HΣ. Especially, we are interested in the one particle sector of

HΣ. To understand these structures we will construct ladder operators in the following. For this

purpose, we define for any ξ ∈ LΣ the state

pξ(φ) :=
1√
2
{ξ, φ}Σ ∈ HΣ . (5.71)



70 CHAPTER 5. INTRODUCTION TO THE GENERAL BOUNDARY FORMULATION

which is identified as the representation of a one-particle state in the holomorphic quantization.

This is due to the following properties: Every state pξ can be represented as the first derivative

of a coherent state in the way

pξ =
√

2
d

dα
Kαξ . (5.72)

This gives rise to the identity

〈pξ, pξ′〉Σ = 2
d2

dαdβ
〈Kαξ,Kβξ′〉 = {ξ′, ξ} (5.73)

which is the complex conjugate of the inner product in the complex Hilbert space of solutions

LΣ. Hence, the map p : LΣ → L∗Σ with ξ 7→ p(ξ) = pξ is exactly the isometric anti-isomorphism12

known from Riesz Theorem between the set of solutions LΣ and the dual space L∗Σ of continuous

linear functionals on LΣ. In other words, the set of the states (5.71) form the topological dual

space L∗Σ anti-isomorphic to the set of germs of solutions to the Euler-Lagrange equations LΣ.

For every one particle state we define a corresponding creation operator by its action on a state

ψ as [64]

(a†ξψ)(φ) = pξ(φ)ψ(φ) =
1√
2
{ξ, φ}Σψ(φ) . (5.74)

In particular, applied to the vacuum state ψΣ;0 we get the one particle state, i.e. a†ξψΣ;0 = pξ.

Furthermore, we define the annihilation operators on HΣ as

(aξψ)(φ) = 〈Kφ, aξψ〉Σ = 〈a†ξKφ, ψ〉Σ . (5.75)

When evaluated on a coherent state the action of aξ turns out to be

aξKφ =
1√
2
{φ, ξ}ΣKφ

In particular, all annihilation operators annihilate the vacuum ψΣ;0 = K0, i.e. aξψΣ;0 = 0 for all

ξ ∈ LΣ. By subsequent application of the ladder operators we obtain commutation relations

[aξ, a
†
η] = {η, ξ}Σ, [aξ, aη] = 0, [a†ξ, a

†
η] = 0 . (5.76)

and the Fock structure on HhΣ.

In the following chapters we will apply the GBF to two different setups in Lorentzian spacetimes.

We start by investigating the Unruh effect in the framework of the GBF. On the one hand, this

will help us to learn more about the structure and the elements of the GBF. On the other hand,

the completely different viewpoint of the GBF will help to shed some light on the Unruh effect

itself.

12An anti-isomorphism p between the complex Hilbert spaces LΣ and L∗Σ is a linear bijective map such that for
all ξ ∈ LΣ holds p(JΣξ) = −ip(ξ). This is because in our case the complex multiplication on LΣ is the application
of JΣ. The map p is isometric if it is compatible with the inner product in the sense of Equation (5.73).



Chapter 6

Application of
background-independent QFT:
Unruh effect from the GBF
perspective

In this section I will present results I have worked out together with Daniele Colosi (UNAM,

Campus Morelia) about the Unruh effect in the GBF which we presented in [121]. This applica-

tion is of immediate importance for the GBF program since it represents a concrete application

of the very recently developed quantization of observables [61]. Moreover, for the computations

I will present here mixed states where used for the first time within the GBF.

In the standard formulation of QFT as well as in algebraic QFT the Unruh effect is understood

as a particular relation between the vacuum state in Minkowski space and a certain thermal

state in Rindler space. Rindler space can be embedded in 3 + 1-dimensional Minkowski space

MMink3 as the right Rindler wedge R×R2 ⊂MMink3 where R is defined as R := {x ∈MMink1 :

η(x, x) ≤ 0, x̃ > 0} where η = diag(1,−1) the 1 + 1-dimensional Minkowski metric and x̃ is the

space component of the Cartesian coordinates on 1 + 1-dimensional Minkowski space MMink1

and the embedding is induced by the identification of the time and space component of the

Cartesian coordinates of MMink1 with the time and the first space component of MMink3 . The

1 + 1-dimensional Rindler wedge R is covered by the Rindler coordinates (ρ, η) such that ρ ∈ R+

and η ∈ R. If Minkowski space is considered as a model for spacetime a uniformly accelerated

observer in spacetime moving along the curve γ(τ) = (1, τ) parameterized with proper time τ can

only communicate with points in the Rindler wedgeR×R2. Hence, R×R2 can be associated with

the spacetime seen by the linearly, uniformly accelerated observer and the Unruh effect is stated

as follows: “uniformly accelerated observers in Minkowski spacetime, i.e., linearly accelerated

observers with constant proper acceleration also called Rindler observers, associate a thermal

bath of Rindler particles also called Fulling-Rindler particles to the no-particle state of inertial

observers also called the Minkowski vacuum. Rindler particles are associated with positive-energy

modes as defined by Rindler observers in contrast to Minkowski particles, which are associated

with positive energy modes as defined by inertial observers.”(page 2 in [76]).

71
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This interpretation of the stated relation between the vacuum state defined in Minkowski space

and the thermal state of Rindler space was first proposed by Unruh in 1976 [77]. Since then, it

received a considerable amount of attention in the community because of its relation to other

effects, like the particle creation from black holes (Hawking effect) and cosmological horizons. We

have to emphasize however, that the Unruh effect is still a completely theoretic result. Although,

there are a lot of proposals around aiming at an experimental detection of the Unruh effect [76]

it was not discovered, yet. Hence, it is of extreme importance to ensure that the Unruh effect

has at least a stable mathematical foundation in the framework of QFT.

In fact, the Unruh effect must be distinguished from the well known result that a uniformly

accelerated Unruh-DeWitt detector responds as if submersed in a thermal bath when interacting

with a quantum field in the Minkowski vacuum state [77]. In particular, the derivation of

the Unruh effect in the standard formulation of QFT is done by first, identifying formally the

vacuum state in Minkowski with an entangled state containing linear combinations of products

of n-particle states of the field defined in the left and right Rindler wedges where the left Rindler

wedge is the point reflection of the right Rindler wedge at the origin of Minkowski space. Then

tracing out the degrees of freedom in the left Rindler wedge leads to a density operator in the

right Rindler wedge describing a mixed thermal state at the Unruh temperature [76–82].

The derivation of the Unruh effect in algebraic QFT is much more sophisticated but works

primarily along the same line of argument [91]: It is rigorously proven that the restriction of the

Minkowski vacuum state to the right Rindler wedge is identical to a certain thermal state ψ in

Rindler space where a thermal state in algebraic QFT is defined as a state fulfilling the KMS

condition formally given as the identity of expectation values 〈A(τ)B〉ψ = 〈BA(τ + iβ)〉ψ, for all

observables A,B where A(τ) is the time translation of A [91]. Then, the particle content of this

thermal state is investigated by expressing it as a density matrix in Rindler space which is well

known to be only approximately possible (page 117-118 of [89], page 89 of [90]).

The mathematical foundation of the derivation in the standard formulation of QFT was criticized

sharply by Narozhnyi et.al. in [83–87] which led to an answer by Fulling and Unruh in [88] and

a reply by Narozhnyi et.al. in [122]. The central point of the criticism by Narozhnyi et.al. is

that in the derivation of the Unruh effect in the standard formulation of QFT a certain term in

the mode expansion of the scalar field is neglected which is equivalent to the requirement of an

additional boundary condition at the origin of Minkowski space leading to a topological different

spacetime.

We will obtain the same mathematical problem when investigating the GBF of the Klein-Gordon

field in the Rindler wedge. However, instead of trying to establish a direct map between the

Hilbert spaces associated to Minkowski space and the left and right Rindler wedge we will retreat

to the identification of expectation values of local observables, i.e. observables restricted to open

subsets of the Rindler wedge, in the Minkowski vacuum state and the Rindler thermal state.

This result is of course rather a hint of the original Unruh effect than a proof of the effect in

its full generality. However, from a physical perspective, the restriction of the set of observables
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seen by the Rindler observer to the interior of the Rindler wedge is a reasonable condition since

no observer should be able to measure at its spacelike infinity.

For the problems arising in the derivation of the Unruh effect in algebraic QFT we refer the

interested reader to the article by Earman [90].

In the following we will investigate the Unruh effect for the 1 + 1-dimensional Rindler wedge R
embedded in 1 + 1-dimensional Minkowski space. This case already contains everything we need

to discuss the Unruh effect from the GBF perspective and is immediately generalizable to 3 + 1

dimensions. This can be seen from the fact that the mode expansion in the additional directions

in the 3 + 1-dimensional Rindler wedge R × R2 contribute to the mode expansion in R like a

variable mass term. The Unruh effect in 1 + 1 dimensions however, is mass independent.

6.1 GBF in Minkowski space

We start with the action for the real massive Klein-Gordon field on 1+ 1-dimensional Minkowski

spacetime MMink = (R2, η = diag(1,−1))1 which is given by

S[φ] =
1

2

∫
d2x

(
ηµν∂µφ∂νφ−m2φ2

)
. (6.1)

We consider the region M ⊂ M bounded by the disjoint union of two spacelike hypersurfaces

represented by two equal time hyperplanes which we denote as Σ1,2 : {t = t1,2}, i.e. M =

R× [t1, t2]. The boundary of the region M corresponds to the disjoint union ∂M = Σ1∪Σ2. The

set of solutions of the equations of motion in the neighborhood of ∂M decomposes as a direct

sum as LΣ = LΣ1 ⊕ LΣ2
where LΣ1 and LΣ2

are the sets of solutions in the neighborhood of Σ1

and Σ2 respectively each equipped with the corresponding symplectic form

ωΣi(φ, φ
′) =

1

2

∫
R
dx̃
(
φ∂tφ

′ − φ′∂tφ
)

(x̃) , (6.2)

where ωΣ2 = −ωΣ2
and x̃ is the coordinate along the hypersurfaces.

We now proceed to the quantization according to the GBF: We will define the relevant algebraic

structures we introduced in Chapter 5. We start with the complex structure associated to

Minkowski space. It can be given by the expression [123]

JΣi =
∂t√
−∂2

t

, (6.3)

where JΣ2 = −JΣ2
which defines a unitary complex structure on LΣ in the sense that it is

compatible with the dynamics of the field, i.e. JΣ2
= −T ◦ JΣ1 ◦ T−1 where T is the evolution

map define in Section 5.8. The corresponding Hilbert space associated with ∂M is given by the

tensor product H∂M = HΣ1 ⊗HΣ2
, where HΣ1 and HΣ2

are the Hilbert spaces associated with

the hypersurface Σ1 and Σ2 respectively and the inversion of the orientation is encoded by the

involution ι : HΣ2 → HΣ2
, ψ 7→ ψ (see Section 5.6).

1We drop the index from now on. Whether it 3 + 1- or 1 + 1-dimensional Minkowski space is meant should be
clear from the context.
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In order to provide explicit expressions for the action of the complex structure we expand the

scalar field in a complete basis of solutions of the Euler-Lagrange equations to the action (6.1)

φ(x̃, t) =

∫
dp (φ(p)ψp(x̃, t) + c.c.) , (6.4)

where ψp(x̃, t) are chosen to be the eigenfunctions of the boost generator, namely the boost

modes2 3

ψp(x̃, t) =
1

23/2π

∫ ∞
−∞

dq exp (im(x̃ sinh q − t cosh q)− ipq)

= e−iωt
1

23/2π

∫ ∞
−∞

dq exp (imx̃ sinh q − ipq) , (6.5)

where we have introduced the operator ω =
√
−∂2

x̃ +m2. These modes are normalized as

ωΣi(ψp, ψp′) = δ(p− p′), ωΣi(ψp, ψp′) = ωΣi(ψp, ψp′) = 0. (6.6)

The boost modes (6.5) are eigenfunctions of the complex structure (6.3), i.e. JΣiψp = −iψp.
Then, the symplectic form ωΣi(·, ·), the metric gΣi(·, ·) and the inner product {·, ·}Σi , evaluated

for two solutions φ, φ′ ∈ LΣi (i = 1, 2) take the form

ωΣi(φ, φ
′) =

i

2

∫ ∞
−∞

dp
(
φ(p)φ′(p)− φ(p)φ′(p)

)
, (6.7)

gΣi(φ, φ
′) = 2ωΣi(φ, JΣiφ

′) =

∫ ∞
−∞

dp
(
φ(p)φ′(p) + φ(p)φ′(p)

)
, (6.8)

{
φ, φ′

}
Σi

= gΣi(φ, φ
′) + 2iωΣi(φ, φ

′) = 2

∫ ∞
−∞

dp φ(p)φ′(p). (6.9)

As explained in Chapter 5, these algebraic structures are all we need for the holomorphic rep-

resentation of the GBF in Minkowski space. In the next section, we will derive the equivalent

objects for the GBF of the scalar field on Rindler space.

6.2 GBF in Rindler space

For the quantization of the scalar field in Rindler spacetime we consider again the action in

Equation (6.1) but restricted to the right Rindler wedge of 1 + 1-dimensional Minkowski space

given as R = {x ∈ MMink : η(x, x) ≤ 0, x̃ > 0}, which is covered by the Rindler coordinates

(ρ, η) such that ρ ∈ R+ and η ∈ R. The Cartesian coordinates (t, x̃) and the Rindler coordinates

are related by the identity t = ρ sinh η and x̃ = ρ cosh η, on R and the metric of Rindler space

results to be ds2 = ρ2dη2 − dρ2. We consider the region R ⊂ R bounded by the disjoint union

of two equal-Rindler-time hyperplanes ΣR
1,2 : {η = η1,2}, i.e. R = R+ × [η1, η2]. Then, we obtain

from Equation (5.30) for the symplectic form

ωΣRi
(φ, φ′) =

1

2

∫ ∞
0

dρ

ρ

(
φ∂ηφ

′ − φ′∂ηφ
)

(ρ) . (6.10)

2It is assumed that an infinitely small imaginary part is added to t. Moreover, the integral over p in (6.4) must
be extended from −∞ to +∞.

3Usually, in the standard formulation of QFT in Minkowski, the expansion is given in the basis of plane wave
solutions. However, it turns out to be more convenient for our purposes to use the boost modes. It can be shown
that this expansion is equivalent to the one in the plane wave basis.
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The complex structure given by the derivative with respect to the Rindler time coordinate η as

JΣRi
=

∂η√
−∂2

η

, (6.11)

destinguishes between positive and negative Rindler energy modes. Hence, it defines the vacuum

state in Rindler space with respect to the time translation Killing vector field ∂η (see [123, 124]).

In order to repeat the construct of the quantum theory implemented in Minkowski spacetime,

we start by expanding the field in a complete set of solutions of the Euler-Lagrange equations,

φR(x) =

∫ ∞
0

dp
(
φR(p)φRp (x) + c.c.

)
, (6.12)

where the Fulling modes [124] φRp read

φRp (x) =
(sinh(pπ))1/2

π
Kip(mρ)e−ipη

= (2 sinh(pπ))1/2e−pπ/2 ψp(x), p > 0, (6.13)

where Kip is the modified Bessel function of the second kind, also known as Macdonald function

[125]. The modes (6.13) are normalized as

ωΣRi
(φRp , φ

R
p′) = δ(p− p′), ωΣRi

(φRp , φ
R
p′) = ωΣi(φ

R
p , φ

R
p′) = 0 . (6.14)

and eigenfunctions of the complex structure (6.11), i.e. JΣRi
φRp = −iφRp . The algebraic structures

defined on the hypersurface ΣR
i , considered for two solutions φR, ψR ∈ LΣRi

result to be

ωΣRi
(φR, ψR) =

i

2

∫ ∞
0

dp
(
φR(p)ψR(p)− φR(p)ψR(p)

)
, (6.15)

gΣRi
(φR, ψR) =

∫ ∞
0

dp
(
φR(p)ψR(p) + φR(p)ψR(p)

)
, (6.16){

φR, ψR
}

ΣRi
= gΣRi

(φR, ψR) + 2iωΣRi
(φR, ψR) = 2

∫ ∞
0

dp φR(p)ψR(p). (6.17)

Now, these structures allow for the implementation of the holomorphic representation within the

GBF for the quantum scalar field in Rindler space.

It is important to notice that in order for the quantum theory in Rindler space to be well defined

the condition φR(ρ = 0, η) = 0 must be imposed. Indeed, when Rindler space is embedded in

Minkowski space and the complex structure JΣRi
is expressed in Cartesian coordinates (x, t) we

get the expression

JΣRi
=

x̃∂t + t∂x̃√
−(x̃∂t + t∂x̃)2

. (6.18)

which is well defined only outside of the origin of Minkowski space. Whereas the condition

φR(ρ = 0, η) = 0 is just the usual condition expressing that the field must vanish at spacelike

infinity in Rindler space the condition that the field should vanish at the origin of Minkowski

space is an additional condition. This condition has been discussed already by Narozhny et.al.

in [83–87, 122] where the authors emphasize the relevance of the condition in the derivation of
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the Unruh effect in the standard formulation of QFT as well as algebraic QFT questioning the

existence of the Unruh effect itself.

To avoid all the mathematical issues concerning the boundary condition at the origin of Minkowski

space we will use an approach different from the standard one in the next section. In particular,

we will not try to construct a map between Hilbert spaces. Inspired by some results derived

within the algebraic approach to quantum field theory4 we will compare the expectation value of

a generic Weyl observable defined on a compact spacetime region in the interior of the Rindler

wedge for the vacuum state in Minkowski space with that for a certain mixed state in Rindler

space not making any use of the embedding of Rindler space and Minkowski space in the for-

malism. It will turn out that these two expectation values are equal when the observables are

quantized according to the Feynman quantization prescription which can be interpreted as the

appearance of the Unruh effect within the GBF. Let me remark that the coincidence of the

expectation values is weaker than the original statement of the Unruh effect which implies the

latter. However, as I explained above, the original statement of the Unruh effect using a map

between Hilbert spaces is certainly to strong to be shown mathematically rigorously in the frame-

work of the GBF. As the results of [83–87, 122] suggest it might be even to strong to be shown

mathematically rigorously in the standard formulation of QFT.

6.3 The relation between operator amplitudes on Minkowski
and Rindler space

In the following we will calculate the expectation values of a Weyl observable

W (φ) = exp

(∫
M
d2xµ(x)φ(x)

)
(6.19)

with µ supported on a compact subregion of R first, for the vacuum state of the GBF for the

Klein-Gordon field in Minkowski space ψM ;0 = K0⊗K0 ∈ HΣR1
⊗̂H

ΣR2
and then, for the following

mixed state in Rindler space:

D =
∏
p

N2
p

∞∑
n=0

e−2πnp 2n

n!

δn

δξ1(p)n
δn

δξ2(p)n
Kξ1 ⊗Kξ2

∣∣∣∣∣
ξ1=ξ2=0

(6.20)

whereKξ1 ∈ HΣR1
andKξ2 ∈ HΣR2

are the coherent states corresponding to ξi = 1√
2

∫∞
0 dp ξi(p)(φ

R
p +

c.c.) ∈ LΣRi
(i = 1, 2) where ξi(p) is a real function and the normalization factors are given as

Np = (1− e−2πp)1/2. Note that the mixed state in Equation (6.20) is equivalent to the one used

in the literature of the standard formulation of the Unruh effect [76]. The expectation values

of the Weyl observable (6.19) will be calculated using both the Feynman and Berezin-Toeplitz

quantization scheme.

For the vacuum state in Minkowski space we obtain with (5.59) the amplitude

ρµM (ψM ;0) = exp

(
i

2

∫
M
d2xd2x′ µ(x)GJF (x, x′)µ(x′)

)
. (6.21)

4We refer in particular to Fell’s theorem [126] and the work of Verch [127] and of Sewell [91].
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Due to the unitarity of the complex structure we can use the expression in Equation (5.66) for

the Feynman propagator which gives

GMink
F (x, x′) = i

∫ ∞
−∞

dp
(
θ(t′ − t)ψp(x)ψp(x

′) + θ(t− t′)ψp(x)ψp(x′)
)
. (6.22)

When x and x′ are restricted to the right Rindler wedge we can express GMink
F (x, x′) in terms of

the boost modes. Using the definition of the boost modes in (6.5) and integral representations

for the Bessel function

Kip(mρ) =
1

cosh
(πp

2

) ∫ ∞
0

dq cos(mρ sinh q) cos(pq) (6.23)

=
1

sinh
(πp

2

) ∫ ∞
0

dq sin(mρ sinh q) sin(pq) (6.24)

we find that
ψp(x) = (2 sinh(pπ))−1/2e

πp
2 φRp (x)

ψ−p(x) = (2 sinh(pπ))−1/2e−
πp
2 φRp (x) , p > 0 .

(6.25)

With some rearrangements we find for the Feynman propagator

GMink
F (x, x′) = i

∫ ∞
0

dp
eπp

2 sinhπp

(
θ(η′ − η)φRp (x)φRp (x′) + θ(η − η′)φRp (x)φRp (x′)

)
(6.26)

+i

∫ ∞
0

dp
e−πp

2 sinhπp

(
θ(η − η′)φRp (x)φRp (x′) + θ(η′ − η)φRp (x)φRp (x′)

)
where we used that η is a strictly increasing function of t 5.

Let us now turn to Rindler space and the mixed state D in (6.20). The corresponding observable

map for the Weyl observable (6.19) is

ρWR (D) =
∏
p

N2
p

∞∑
n=0

e−2πnp 2n

n!

δn

δξ1(p)n
δn

δξ2(p)n
ρWR (Kξ1 ⊗Kξ2)

∣∣∣∣∣
ξ1=ξ2=0

. (6.27)

Having a look at the expression in Equation (5.59) for the operator amplitude ρWR (Kξ1 ⊗Kξ2)

for coherent state Kξ = Kξ1 ⊗Kξ2 we find that we have to calculate the following three terms

to evaluate the derivatives in Equation (6.27):

• the free amplitude ρR(Kξ) = ρR(Kξ1 ⊗Kξ2) can be computed using (5.44), where in the

present context ξR = ξ1 + ξ2 and ξI = ξ1 − ξ2, leading to

ρR(Kξ1 ⊗Kξ2) = exp

(
1

2

∫ ∞
0

dp ξ1(p)ξ2(p)

)
, (6.28)

• the Weyl observable evaluated on the complex solution ξ̂ given in this case by

ξ̂(x) = ξR(x)− iξI(x) =
1√
2

∫ ∞
0

dp
(
φRp (x)ξ1(p) + φRp (x)ξ2(p)

)
, (6.29)

5As in the foregoing section, x is used as global notation for the Rindler coordinates (ρ, η).
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• the last term in the r.h.s of (5.59) contains the Feynman propagator in Rindler space which

is given as

GRF (x, x′) = i

∫
dp
(
θ(η′ − η)φRp (x)φRp (x′) + θ(η − η′)φRp (x)φRp (x′)

)
. (6.30)

The observable map (6.27) can then be written as

ρWR (D) =
∏
p

N2
p

∞∑
n=0

e−2πnp δn

δξ1(p)n
δn

δξ2(p)n

× exp

(
1

2
ξ1(p)ξ2(p) +

i√
2

∫
d2xµ(x)

(
φRk (x)ξ1(p) + φRk (x)ξ2(p)

))∣∣∣∣
ξ1=ξ2=0

× exp

(
i

2

∫
d2x d2x′ µ(x)GRF (x, x′)µ(x′)

)
. (6.31)

We proceed by evaluating the first line in the r.h.s. of (6.31) by applying the general Leibniz

rule
dn

dγn
f(γ)g(γ) =

n∑
s=0

(
n

s

)
dn−s

dγn−s
f(γ)

ds

dγs
g(γ), (6.32)

and using the relation
∞∑
s=0

(s+ n)!

s!n!
e−2πsp =

1

(1− e−2πp)n+1
, (6.33)

which we prove in the Appendix A. We obtain

N2
p

∞∑
n=0

e−2πnp 2n

n!

δn

δξ1(p)n
δn

δξ2(p)n
exp

(
1

2
ξ1(p)ξ2(p)

)
×

× exp

(
i√
2

∫
d2xµ(x)

(
φRk (x)ξ1(p) + φRk (x)ξ2(p)

))∣∣∣∣
ξ1=ξ2=0

= N2
p

∞∑
n=0

e−2πnp

(
−
∫

d2x d2x′ µ(x)µ(x′)φRp (x)φRp (x′)

)n 1

n!

∞∑
s=0

(s+ n)!

s!n!
e−2πsp

= exp

(
− e−πp

2 sinh(πp)

∫
d2x d2x′ µ(x)µ(x′)φRp (x)φRp (x′)

)
. (6.34)

Hence, substituting in (6.31) we obtain after some rearrangements

ρWR (D) = exp

(
i

2

∫
d2x d2x′ µ(x)

[
i

∫ ∞
0

dp φRp (x)φRp (x′)
e−πp

sinh(πp)
+GRF (x, x′)

]
µ(x′)

)
. (6.35)

Using the expression in Equation (6.30) for the Feynman propagator in Rindler space we find

that

ρWR (D) = exp

(
i

2

∫
d2x d2x′ µ(x)i

∫ ∞
0

dp φRp (x)φRp (x′)
e−πp + (eπp − e−πp)θ(η − η′)

sinh(πp)
µ(x′)

)
= exp

(
i

2

∫
d2x d2x′ µ(x)i

∫ ∞
0

dp φRp (x)φRp (x′)
e−πpθ(η′ − η) + eπpθ(η − η′)

sinh(πp)
µ(x′)

)
= exp

(
i

2

∫
d2x d2x′ µ(x)GMink

F (x, x′)µ(x′)

)
(6.36)

which coincides with the observable amplitude (6.21) computed in Minkowski spacetime for the

vacuum state.
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As we saw in Equation (5.70) the operator amplitude for the Weyl observable W in the Berezin-

Toeplitz quantization scheme for the state ψ can be obtained by taking as the operator amplitude

for the vacuum state the modulus square of the respective amplitude in the Feynman quantization

scheme. Hence, we find

ρJWIMink (ψ∂M ;0) = exp

(
−1

2

∫
d2x d2x′ µ(x)2ImGMink

F (x, x′)µ(x′)

)
(6.37)

ρJWIR (D) = exp

(
−1

2

∫
d2x d2x′ µ(x)

[∫ ∞
0

dp φRp (x)φRp (x′)
e−πp

sinh(πp)
+ 2ImGRF (x, x′)

]
µ(x′)

)
.

With the result for the Feynman quantization in (6.36) we obtain that for the two amplitudes

(6.37) to be equal first, the following equality must hold∫
d2x d2x′ µ(x) 2Re

∫ ∞
0

dp φRp (x)φRp (x′)
e−πp

sinh(πp)
µ(x′)

=

∫
d2x d2x′ µ(x)

∫ ∞
0

dp φRp (x)φRp (x′)
e−πp

sinh(πp)
µ(x′) (6.38)

which can only be true if both sides vanish and second, the Feynman propagator of the Minkowski

quantization and the one of the Rindler quantization must be equal when restricted to the right

Rindler wedge which is obviously not true. Hence, we find that there is no ground for the Unruh

effect when adopting the Berezin-Toeplitz prescription for quantizing local observables.

Remark, that for derivation of the Unruh effect in the GBF in this chapter we were considering

a region bounded by two spacelike hypersurfaces. Since the boundary of the region considered

itself has a boundary, namely the origin, the setup we used was already much more general than

the standard formulation of QFT. In the next chapter, however, we will finally leave the realm

of the standard formulation of QFT far behind by applying the GBF to regions bounded by

timelike hypersurfaces. The aim will be to derive conditions for the vacuum state on timelike

hypersurfaces using the response of an Unruh-DeWitt detector.



 



Chapter 7

Application of
background-independent QFT:
quantum scalar field on a tensorial
spacetime

General linear electrodynamics on are metric spacetimes (as one particular example of tensorial

spacetimes) was quantized and the Casimir effect in that theory was derived in [116]. Also, a

classical massive particle defined in Section 2.6 was “first” quantized using standard methods of

constraint quantization [128]. In this chapter, we will investigate the possibilities to establish a

quantum field theory for the real massive scalar field theory defined in Section 4.1 on tensorial

spacetimes. As we argued at the end of Section 3.3, quantum field theory on tensorial spacetimes

would be needed to calculate decay rates for the vacuum Cherenkov process. Moreover, it would

be interesting to consider elementary particle processes like for example in QED to calculate

the dependence on the tensorial background. That could be one way to experimentally find

deviations from Lorentzian spacetime geometries and to test the assumptions we made for the

theory of tensorial spacetimes in Chapter 2. In particular, the quantized scalar field would be

of interest in particle physics as the Higgs mechanism in the standard model is usually modeled

using a scalar field. Furthermore, scalar field theories of higher derivative order appear in the

theory of inflation [129] and quantum gravity [130–133].

Beside these physical arguments there is a good mathematical reason to consider the quantum

theory of fields with higher derivative field equations, since they show generically a much better

ultraviolet behavior, i.e. they are better renormalizable [131, 134, 135]. We will see this for the

real scalar field in the following: Let us consider the action 4.3 for a real scalar field φ that was

given as

SM[φ] =

∫
M
dNx

(
Pµ1...µr 1

2
(∂µ1 · · · ∂µr/2φ(x))(∂µr/2+1

· · · ∂µrφ(x))− 1

2
mrφ2(x)

)
. (7.1)

Adding an interaction term of the type λφν where ν ∈ N with a real coupling constant λ, the

action

SM;µ[φ] = S[φ] + λ

∫
dNxφν(x) (7.2)

81
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would be a valid action leading to an interacting quantum field theory. We can even look for the

renormalizability of this theory using standard power counting techniques in the following way:

With ~ = c = 1 momenta have mass dimension 1 and every length has mass dimension −1. To

get the action SM[φ] dimensionless, the mass dimension of the field φ has to be (N − degP )/2.

To get the coupling term dimensionless, the interaction constant λ must have mass dimension

N − ν(N − degP )/2. To have a renormalizable theory, the mass dimension of the coupling

constant ν must not be less than zero. This statement stems from the following argument that

can be found in a slightly different form in [136]: Let us assume that we have regularized a

formally infinite expression for a probability p that came up when we where considering the

interacting theory given by (7.2) perturbatively to some order i in the coupling constant λ. Let

us assume that λ is of mass dimension dim(λ). Let us assume further that we have done the

regularization by imposing a cut-off constant κ on the momenta. Then, κ has obviously the mass

dimension 1. Since the i-th order term contributing to p will be proportional to λi but must be

non-dimensional, it must be also proportional to κi1mi2 with i1 + i2 = −idim(λ) since they are

the only dimensionful constants appearing in the calculation. If we now assume that in the limit

m → 0 not all the contributions of the interaction vanish, we find that there must be cases in

which the perturbative term of order i must be proportional to κ−idim(λ). Now, when removing

the cut-off by taking κ→∞, this term would diverge for dim(λ) < 0 which tells us that in that

case the theory is non-renormalizable.

From the power counting argument we find for the action (7.2) the following necessary condition

for renormalizability:

N − ν(N − degP )/2 ≥ 0 . (7.3)

Especially for degP ≥ N , every interaction term of the form λφν could lead to a renormalizable

theory.

In the case of Lorentzian metric geometry, one can derive this statement in a mathematically very

clear form, using the causal perturbation approach of Epstein and Glaser [137, 138] assuming

that the free quantum field theory for φ is microcausal, i.e., for spacelike separated x and y we

have

[φ̂ν(x), φ̂ν(y)] = 0 , (7.4)

for the field operator φ̂. To generalize this to other field theories we need of course a notion of

spacelike separation. In the framework of tensorial spacetimes this follows from the definition of

spacelike slices generalized to all hyperbolic covectors: We say that a hypersurface is spacelike

if at every point x of that hypersurface its normal covector q corresponds to an observer vector,

i.e. Lx(q) ∈ C#
x where C#

x is the observer cone to Px. Since we assumed to be working in a

coordinate system in which the components of the polarization tensor Pµ1...µr are constant and

M∼= Rn, we can identify TxM withM for every point x ∈M and define that two points x and

y are spacelike separated if there exists a covector q in L−1(C#) such that q(x − y) = 0. This

definition leads to a well defined generalization of causal perturbation theory. However, it turns
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out that to obtain a microcausal scalar field theory on tensorial spacetimes obeying canonical

commutation relations (CCRs), additional solutions that do not correspond to classical particles

have to be included in the theory. In the following section we discuss this issue for the case of a

dispersion relation of fourth order.

7.1 The quantum scalar field on tensorial spacetimes fourth de-
gree dispersion relation

We will discuss the QFT obeying CCRs in the following for the case of a hyperbolic, time

orientable and energy distinguishing polynomial which takes, in some coordinate system, the

form

P (p) = p4
0 − 2g(~p)p2

0 + h(~p) , (7.5)

where g is a bi-linear map on Rn−1 and h is a quadri-linear map, i.e., h : (Rn−1)4 → R. This

case is closely related to the dispersion relation of meta class I area metrics presented in Section

3.4.

In the following, we will quantize the higher order field theory using the background-independent

geometric quantization formalism presented in Chapter 5. We will only consider regions with

boundaries consisting of hypersurfaces that are spacelike in the sense of Chapter 3, i.e. such that

at every point x of the hypersurface the normal lies in the observer cone C#
x to the polynomial

P . In this sense, we will not be using the GBF itself, but just the mathematical framework used

for the holomorphic representation of the GBF.

We assume that the hyperbolic polynomial P defining the dispersion relation is of the form (7.5)

for some coordinates (x0, ~x). Let Σ0 be a hyperplane at x0 then the symplectic form defined in

Equation (5.25) corresponding to the action 4.3 turns out to be

ωx0(φ, φ′) =
1

4

∫
dN−1x P 0b1b2b3

(
φ(x)
←→
∂b1∂b2∂b3φ

′(x)− φ′(x)
←→
∂b1∂b2∂b3φ(x)

)
(7.6)

=
1

4

∫
dN−1x

[
φ(x)∂0(∂2

0 − gij∂i∂j)φ′(x)− (∂2
0 − gij∂i∂j)φ′(x)∂0φ(x) (7.7)

−φ(x)′∂0(∂2
0 − gij∂i∂j)φ(x) + (∂2

0 − gij∂i∂j)φ(x)∂0φ
′(x)

]
. (7.8)

We define

ω±(~p) :=

{ (
g(~p)±

(
g(~p)2 − h(~p)

)1/2)1/2
for h(~p) ≥ 0 or s = +

−iω̃−(~p) for h(~p) < 0 and s = −
, (7.9)

where the energies are given as

ω̃−(~p) :=
(
−g(~p) +

(
g(~p)2 − h(~p)

)1/2)1/2
. (7.10)

for h(~p) < 0. Then, we obtain a parameterization of the solutions to the scalar field equations

(4.2) as

φ(x) =

∫
dN−1p

(2π)N−1

∑
s=±

1

C(s, ~p)D0
pP (ωs,p, ~p)

(φs(~p)ϕ̃s,p(x) + c.c.) . (7.11)
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where

ϕ̃s,p(x) := ϕ̃0,s,p(x0)e−i~p·~x , (7.12)

C(s, ~p) :=

{
1 for h(~p) ≥ 0 or s = +
−i for h(~p) < 0 and s = − , (7.13)

and

ϕ̃0,s,p(x0) :=

{
e−iωs(~p)x0 for h(~p) ≥ 0 or s = +
cosh(ω̃−(~p)x0) + i sinh(ω̃−(~p)x0) for h(~p) < 0 and s = − . (7.14)

We call the two different types of solutions in Equation (7.9) propagating and evanescent waves,

respectively. Using the translation invariance of the symplectic form, we obtain

0 = ∂0ωx0(ei(ω
∗
s′ (~p
′)x0+~p′·~x), e−i(ωs(~p)x0+~p·~x)) (7.15)

= −i(ωs(~p)− ω∗s′(~p′))ωx0(ei(ωs′ (~p
′)x0+~p′·~x), e−i(ωs(~p)x0+~p·~x)) (7.16)

from which we conclude that solutions with energies such that ωs(~p) 6= ω∗s′(~p
′) are orthogonal.

We find that

ωx0(ϕ∗s′,p′ , ϕs,p) =
i

4
C(s, ~p)D0

pP (ωs(~p), ~p)δs,s′(2π)N−1δ(N−1)(~p− ~p′) (7.17)

and for general solutions

ωx0(φ, φ′) =
i

4

∫
dN−1p

(2π)N−1

∑
s=±

1

C(s, ~p)D0
pP (ωs,p, ~p)

(
φs(~p)φ

′
s(~p)− c.c.

)
(7.18)

Now we use the complex structure

J :=


∂0√
−∂2

0

for h(~p) ≥ 0 or s = +

P ∂0√
∂2

0

for h(~p) < 0 and s = − , (7.19)

where Pφ(x0, ~x) = φ(−x0, ~x). We obtain that J acts on coefficients φs(~p) as

Jφs(~p) = −iφs(~p) ,

and obtain the symmetric bilinear form gx0(φ, φ′) = 2ωx0(φ, Jφ′) as

gx0(φ, φ′) = 2ωx0(φ, Jφ′) =
1

2

∫
dN−1p

(2π)N−1

∑
s=±

1

C(s, ~p)D0
pP (ωs,p, ~p)

(
φs(~p)φ

′
s(~p) + c.c.

)
(7.20)

and the inner product defined in (5.34) as {φ′, φ}x0 = gx0(φ, φ′) + 2iωx0(φ, Jφ′) turns out to be

{φ, φ′}x0 =

∫
dN−1p

(2π)N−1

∑
s=±

1

C(s, ~p)D0
pP (ωs,p, ~p)

φs(~p)φ′s(~p) (7.21)

Then we define the space of germs LΣ0 at Σ0 to the field equations (4.2) and the holomorphic

Hilbert space HΣ0 as in Section 5.5. By defining creation and annihilation operators on Σ0 as

explained in Section 5.10, we obtain the canonical commutation relations

[aξ, a
†
η] = {η, ξ}x0 [aξ, aη] = 0 = [a†ξ, a

†
η] . (7.22)
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for aξ and a†η corresponding to the real solutions ξ, η ∈ LΣ0 respectively. We can then define a

field operator on Σ0 to quantize interaction terms. As in canonical quantization we write

φ(x) =
∑
s=±

∫
dN−1p

(2π)N−1

√
2

C(s, ~p)D0
pP (ωs(~p), ~p)

(
aϕ̃s,p+c.cϕ̃s,p(x) + h.c.

)
, (7.23)

using that the action of the annihilation operator on a coherent state is given as

(aξψη) (φ) =
1√
2
{φ, ξ}x0ψη(φ) . (7.24)

Now we can calculate the commutator

[φ(x), φ(y)] =
∑
s,s′=±

∫
dN−1pdN−1p′

(2π)2(N−1)

2

C(s, ~p)D0
pP (ωs(~p), ~p)C(s′, ~p′)D0

pP (ωs′(~p′), ~p′)(
{ϕ̃s′,p′ + c.c., ϕ̃s,p + c.c.}ϕ̃s,p(x)ϕ̃∗s′,p′(y)− c.c.

)
=

∑
s=±

∫
dN−1p

(2π)N−1

2

C(s, ~p)D0
pP (ωs,p, ~p)

(
ϕ̃s,p(x)ϕ̃∗s,p(y)− c.c.

)
.

For s = “−′′ and h(~p) < 0 we find, using the parity invariance of the dispersion relation, that

ϕ̃−,p(x)ϕ̃∗−,p(y) + ϕ̃−,−p(x)ϕ̃∗−,−p(y)− c.c.

= 2i sinh ω̃−(~p)(x0 − y0)e−i~p(~x−~y) − c.c.

= −i
(
e−iω−(~p)(x0−y0)−i~p(~x−~y) − eiω−(~p)(x0−y0)+i~p(~x−~y) + c.c.

)
.

Recalling that if −iω̃−(~p) is a solution also iω̃−(−~p) is a solution, we find that

[φ(x), φ(y)] =
i

2
(E+(x, y)− E−(x, y)) . (7.25)

where E+(x, y) and E−(x, y) are the advanced and retarded operators, respectively, given by

G̊arding in [139] as

E±(x) =

∫
R

dNp

(2π)N
e±i (p−iη).x

P (p− iη)−mdegP
(7.26)

with η an arbitrary but fixed element of the hyperbolicity cone C. It turns out that E+ and E−

have a causal support which can be seen by choosing η large enough such that all the roots of

P (p − iη) lie above the real axis. Using now that if ω(~p) is a root of P (p) − mdegP = 0 then

−ω(−~p) is also a root, we enumerate the roots as ω1(~p), . . . , ωs/2(~p) such that ωn(~p) 6= −ωn(−~p).
Then we find that G̊arding’s propagator can be written as

E±(x) = ±iθ(±x0)

s/2∑
n=1

∫ ∞
−∞

dN−1p

(2π)N−1

1

D0
pP (ωn(~p), ~p)

[
eiωn(~p)t+i~p~x − e−iωn(~p)t−i~p~x

]
. (7.27)

Hence, we end up with a microcausal theory. This is due to the choice of the complex structure.

When investigating the bi-linear form gx0 , however, we find that it is not positive definite. For

s = “−′′ we have that

1

4
C(s, ~p)D0

pP (ωs,p, ~p) =

{
ω−(~p)3 − ω−(~p)g(~p) for h(~p) ≥ 0
ω̃−(~p)3 + ω̃−(~p)g(~p) for h(~p) < 0

. (7.28)



86 CHAPTER 7. QUANTUM SCALAR FIELD ON A TENSORIAL SPACETIME

Since gx0 turns up in the Gaussian measure on the Hilbert space of holomorphic quantization, we

interpret this as the statement that the states with s = “−′′ and h(~p) > 0 are not normalizable.

That field theories with higher derivative field equations lead to these kinds of states is well

known in the literature [132, 140–142]. In particular, in [142] it is argued that this problem also

appears for some massive gauge theories of higher derivative order.

When excluding the non-classical s = “−′′ solutions in the commutator we obtain

[φ(x), φ(y)] =

∫
dN−1p

(2π)n−1D0
pP (ω,~k)

(
e−iω(~p)(x0−y0)−i~p.(~x−~y) − c.c.

)
=

∫
C(P )

dNp

(2π)N
2πδ

(
P (k)−mdegP

)(
e−i(x−y).p − c.c.

)
, (7.29)

where the integration is restricted to the hyperbolicity cone C(P ). In the case of a polynomial P

induced by a Lorentzian metric, microcausality would now follow directly with an easy argument

by Peskin and Schroeder [136] using the Lorentz invariance of the expression in (7.29).

In general (7.29) is not zero outside of C⊥(P ) ∪ −C⊥(P ), which can be seen from the massless

limit of (7.29) in the following example:

Example: Let us consider a 1 + 1 dimensional tensorial spacetime defined by the hyperbolic

polynomial P (p0, p) = (p2
0 − p2)(p2

0 − 2p2) providing the dispersion relation P (p0, p) = 0 for a

massless particle. Now we take into account only the energy solutions lying on the inner cone,

i.e. p0 = ±
√

2|p|, which is obviously the massless limit of those solutions fulfilling P (p0, p) = m4

and lying on the hyperbolicity cone defined by h = (1, 0). We obtain that

[φ(x), φ(0)] = α

∫ ∞
−∞

dp

p3
cos(px) sin(

√
2px0) , (7.30)

where α is a numerical factor. One then finds, for example, that for the point (x0, x) = (1/3, 1)

outside the dual of the hyperbolicity cone, [φ(x0, x), φ(0, 0)] = −α
√

2π
3 .

Hence, to obtain a microcausal theory, the ghost modes have to be included although they lead

to indefinite norm states usually called ghosts. In particular, we obtain the following statement:

Lorentzian spacetimes are the only tensorial spacetimes on which one can consistently establish a

microcausal, unitary quantum scalar field theory fulfilling canonical commutation relations such

that only classical interpretable particles exist.

To discuss the quantization of ghost modes further, we would need to use more elaborate tech-

niques dealing with negative norm states which however we could not compellingly apply before

the completion of this thesis. One way to cover the problem of negative definiteness might be to

construct Krein spaces. This works basically by splitting the Hilbert space into a direct sum of

one part on which the inner product is negative and one on which the inner product is positive.

On the negative part a positive inner product is then defined from the original inner product

on the whole space by just multiplication with −1. If the direct sum of the such defined inner

product spaces is a Hilbert space we define it as the total Hilbert space of the quantum theory.
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This was done in the GBF in [62] for the case of the Dirac field and there should be no obstacle

to do the same in our case. However, in [62] the Fock space quantization scheme is used which

is slightly different from the holomorphic one we considered above. To construct the QFT using

Krein spaces and to calculate the amplitude and observable maps on these spaces would be an

interesting task but was not done before the completion of this thesis.

7.2 Comparison with the Klein-Gordon field of imaginary mass

We saw in the foregoing section when constructing quantum field theories on hyperbolic poly-

nomial spacetimes one faces difficulties that are connected to the existence of solutions to the

higher order field equations that cannot be interpreted as the quantized version of classical par-

ticles. In the case of a real scalar field with field equations of fourth order, we showed that all

solutions have to be included to obtain a microcausal QFT if it is supposed to lead to canonical

commutation relations. Using a background-independent quantum field theory, it turned out

that a microcausal QFT can be constructed if the problem of negative norm states is solved.

This problem resembles closely what is known about the QFT for the Klein-Gordon field with

imaginary mass. In that case the field equations are of the form:

ηµν∂µ∂νφ−m2φ = 0 , (7.31)

with η = diag(1,−1,−1,−1). The solutions that appear are exactly those in Equation (7.9) for

s = − and ω− the solution of the dispersion relation (7.5) with g(~p) =
∑

α p
2
α and h(p) = g(p)2.

There where several attempts to construct a meaningful quantum field theory for the scalar field

with imaginary mass [143–153]. However, it turned out to be difficult: For instance, in [143] and

[144] evanescent modes are excluded and quantization schemes are presented for the propagating

modes only which leads to a violation of microcausality as we saw above.

In [146] the author constructs a microcausal quantum field theory. The author argues that solu-

tions to (7.31) cannot be localized and thus, cannot be interpreted as particles.

It was argued in [150] that all the problems concerning the causality and Lorentz invariance of

the quantum field theory for the imaginary mass Klein-Gordon field (7.31) are resolved when the

propagator of the field is (7.26) for P (p) = g(p, p) and g a Lorentzian metric. This is a special

case of the result we found in (B).

In the algebraic approach to quantum field theory, the propagator (7.26) can be taken as a

basis for the quantization as it was shown for the case of the Klein-Gordon field in [154, 155]

as follows: Let C∞(M,R) denote the space of real smooth test function on M and C∞0 (M,R)

the set of those elements of and C∞(M,R) with compact support. Then, we can understand the

propagator E = E+ − E− with

E±(x) =

∫
R

dNp

(2π)N
e±i (p−iη).x

P (p− iη)−mdegP
(7.32)
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for hyperbolic P as the integral kernel for a map E from C∞0 (M,R) to C∞(M,R). With E we

can define the symplectic form

ω(Ef, Eg) =

∫
M
dnx f(x) E(h)(x) (7.33)

which turns the image R := E(C∞0 (M,R)) into a symplectic space. Then, we can define the

algebra of Weyl observables W by specifying the Weyl relation

W (φ)W (φ′) = e−iω(φ,φ′)/2W (φ+ φ′) , (7.34)

for all φ, φ′ ∈ R which is the exponential form of the usual CCR algebra. This way we arrive

at a completely well defined algebra of observables. However, the problem comes again up when

one tries to find a vacuum state. In [152] it was argued that “Lorentz symmetry breaking must

occur” when a vacuum state is chosen for the algebra of observables corresponding to (7.31).

The same statement can be found in [153]. If this is true and the imaginary mass Klein-Gordon

field would exist in nature these violations could be detectable experimentally in principal. Dif-

ferent inertial observers should see a different particle content of imaginary mass Klein-Gordon

particles in the same state of the field. In some sense this is similar to the Unruh and Hawking

effect where, however, this difference is between inertial and accelerated observers.

The above mentioned results for the imaginary mass Klein-Gordon field suggest that if we would

be able to perform the quantization of the massive scalar field with fourth order dispersion

relation compellingly, it is very likely that different non-accelerated observers would see different

particle contents in the same state of the quantum field. This should be detectable in principle.

In particular, there must could be a preferred frame in which the state of the quantum field is

seen as the vacuum state, i.e., without any particles.

Furthermore, having a consistent quantum field theory for higher order scalar fields at hand,

we would still have the problem to interpret the solutions that do not correspond to classical

particles.



Chapter 8

Conclusions

One central aim of this thesis was to investigate the conditions that a tensor field G needs to

satisfy in order to provide a viable spacetime structure with well-defined notions of observers

and well-posed matter field dynamics living on it. The investigation was explicitly aimed at

geometries beyond Lorentzian metrics. For that purpose, we started by investigating tensorial

matter fields governed by linear partial differential equations on a differentiable manifold M.

Here, the linearity of the field equations encodes exactly what is meant when one speaks of test

matter; the dynamics do not depend on the amplitude of the field. Standard PDE theory iden-

tifies the principal symbol P corresponding to the linear field equation as the object encoding

the predictability of the latter. In particular, for the corresponding field equations to have a

well-posed initial data problem, the cotangent bundle function P must induce a homogeneous,

hyperbolic polynomial in every cotangent fiber. We identified this property as a first condition

on P and went on to identify three additional conditions, namely that P must be reduced, time-

orientable and energy-distinguishing. Tensorial structures G giving rise to such a hyperbolic,

reduced, time-orientable and energy-distinguishing P were called tensorial spacetime geometries.

These conditions on P translate directly to conditions on the tensorial background structure G.

To make this point clear and to show the distinction between the fundamental geometry G and

the geometry defined by polynomial P , we presented two examples of Maxwell electrodynamics

corresponding to metric geometry as well as area metric electrodynamics corresponding to area

metric geometry. We found that the above conditions restrict the metric geometry to being

Lorentzian, and in the case of area metric geometry 16 out of 23 meta-classes of area metrics are

excluded.

For a tensorial spacetime structure, we were then able to prove the existence of a certain dual

tangent bundle function P# to P called the Gauss dual containing the same amount of informa-

tion as P . Using the duality between P and P#, we were able to derive the dispersion relation

and the action for massless point particles and to define observers. In particular, the set of

observers turned out to be a convex cone that does not contain any massless velocities, but has

a boundary of massless velocities. Hence, observers are always slower than light. Additionally,
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all observers agree on a notion of positive and negative energy for all massless particles.

For a reduced, time-orientable and energy-distinguishing P we where then also able to define the

dispersion relation and an action for massive momenta. These were governed by another dual

tangent bundle function P ∗ called the Legendre dual. We found that trajectories of observers

can be identified with those of massive particles in the framework of general tensorial spacetimes.

By giving the tangent space geometry (P#, P ∗), we solved the problem of finding a valid gen-

eralization of Finsler geometry including the dynamics of massless particles. The twist required

here is that the geometry must be established by one function P on the cotangent bundle,

rather than the tangent bundle where one starts in the standard approach to Finsler geometry.

Moreover, one must restrict attention to functions P which are hyperbolic, time-orientable and

energy-distinguishing reduced homogeneous polynomials in each cotangent fiber. Here, it is bi-

hyperbolicity in particular which generalizes the Lorentzian character of metrics to the much

more general geometries studied in this work. So, while there is one single geometric structure

on cotangent space, there are two very different structures induced by it on the tangent bundle,

the duals P# and P ∗. Hence, the general approaches to Finslerian spacetime geometries are

correct in describing massive particles by giving a generically non-polynomial structure P ∗ on

tangent space. However, as we know now from our investigations, it is not possible to describe

massless particles with the same structure on tangent space as the polynomial structure P#, and

the non-polynomial structure P ∗ will generically not be identical. Hence, a single Finslerian or

Lagrangian geometry cannot describe massive and massless particles at the same time. Starting

with the cotangent bundle, instead, we have at our disposal the framework developed above.

Furthermore, for a general tensorial spacetime structure, we defined observer frames and estab-

lished a 3 + 1-decomposition of the massless and massive dispersion relations given in terms of

P . Since this is the usual form in which generalized dispersion relations appear in canonical

quantum gravity and other approaches of quantum gravity, this makes it possible to connect our

framework to the considerations of generalized geometries in the literature. However, we saw

that the 3+1 split depends on the particular observer corresponding to this split. Hence, starting

from the non-covariant 3+1-decomposed dispersion relation it seems to be considerably harder to

find the covariant dispersion relation. Even worse, there could be no covariant dispersion relation

for a given non-covariant dispersion relation. It is therefore conceptually and physically more

meaningful to start from the covariant dispersion relation. This is especially true because the

conditions we identified for P would be deeply hidden in the non-covariant dispersion relation.

We found that observer transformations connecting frames that correspond to different observers

follow from the properties defining observer frames. Additionally, we showed that also freely

falling non-rotating observer frames can be defined from P using a non-linear connection. Hence,

the cotangent bundle function P or, in other words, the dispersion relation has an effect on

spacetime quantities (such as the field-strength tensor, for example) in terms of quantities that

are measurable in a laboratory (like the electric and magnetic field, for example). It is important
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to realize that the choice of a dispersion relation has such far-reaching implications. At the same

time, our algebraic restrictions on the cotangent bundle function P - originally required for other

reasons - ensure that all required kinematical notions can be constructed.

By considering a process called the vacuum Cherenkov process in which a massive particle radi-

ates off a massless particle, we found that all massive particles with velocities that could not be

tangents to the trajectory of an observer are kinematically unstable. In other words, a particle

accelerated to a velocity outside of the convex cone of observers will eventually radiate off a

massless particle to end up at a velocity inside the cone of observers. Hence, although in our

framework super-luminal motion of massive particles is allowed, the vacuum Cherenkov process

gives rise to a “soft limit” which is, in particular, a soft energy cutoff. However, all observers are

by definition stable particles.

By assuming an experimental situation that includes a source of massive particles and a detector,

we identified different energy regimes of the particles emitted by the source with qualitatively

different observations by the detector in a 1 + 1-dimensional toy model case. This would be

a good testing ground for the framework of general tensorial spacetimes. In contrast to the

Cherenkov process, the decay of a massless particle into two massive particles was found to be

kinematically forbidden.

We also considered non-tensorial field theories that lead to the massive dispersion relation on a

tensorial spacetime that possesses a coordinate system in which the coefficients of the polarization

tensor to P are constant. We defined the massive scalar field and obtained conditions on the

coefficient matrices for a generalization of the Dirac equation on general tensorial spacetimes.

We gave examples of generalized Dirac equations for dispersion relations on bi-metric and area

metric spacetimes. We also derived charged currents for these field theories, which makes it

possible to couple them to the electromagnetic field. This would be the basis of a quantum

electrodynamics on tensorial spacetimes.

To establish this quantum electrodynamics and to deal with the massive field theories further,

we would like to have a way to define the corresponding free quantum field theory. That would

be especially necessary to calculate the times scale for the vacuum Cherenkov process for ex-

perimental situations. Furthermore, having such quantum field theories, other results could be

derived that would help to test our theory in concrete examples. For example, one could derive

corrections to cross sections in particle experiments arising on general tensorial spacetimes and

corrections to results in astroparticle physics of massive objects or of the early universe.

In the second part of this thesis, I was mostly dealing with the GBF. This background-independent

QFT framework generalizes QFT to general spacetime regions establishing the correspond-

ing Hilbert spaces on the boundaries of these regions. This is of particular interest in non-

perturbative quantum gravity where no a-priori 3 + 1 space-time split is given since there is no

metric telling us which directions are spacelike and which are timelike.
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In Chapter 6, we investigated the Unruh effect from the GBF perspective. We applied the general

boundary formulation of quantum field theory to quantize a massive scalar field in Minkowski and

Rindler spacetimes. By comparing the two quantum theories, we were able to study the Unruh

effect from a GBF perspective. Our result is that the expectation value of Weyl observables with

compact spacetime support in the interior of the right Rindler wedge, computed in the Minkowski

vacuum state, coincides with the one calculated in an appropriately chosen mixed state in Rindler

space, as long as the observables are quantized according to the Feynman quantization scheme,

one of the quantization schemes for observables in the GBF. This result could be interpreted

as the manifestation of the Unruh effect within the GBF. Furthermore, we showed that the

coincidence of the expectation values does not hold in the Berezin-Toeplitz quantization, which

is the second quantization scheme for observables in the GBF. One possible conclusion would

be that there might be something wrong with Berezin-Toeplitz quantization or with the thermal

state defined in this quantization prescription.

The work presented in Chapter 6 is of immediate relevance for the GBF program. It represents

a concrete application of the quantization of observables and the opportunity to compare the

Feynman and Berezin-Toeplitz schemes in a specific context. Moreover, the computation of

observable maps involved the use of mixed states for the first time within the GBF.

Recall that the spacetime regions we considered for the derivation of the Unruh effect are bounded

by spacelike hyperplanes which represents the usual setup in the derivation of the Unruh effect in

the standard formulation of QFT. Certainly, the GBF for a consideration of much more general

regions like, for example, regions bounded by timelike hypersurfaces or even compact regions.

One possible generalization of the work presented here is to consider a region bounded by one

hyperbola of constant Rindler spatial coordinate ρ extending up to spacelike infinity, i.e., x̃→∞.

Since the origin of Minkowski space does not lie in this region, the Hilbert spaces of Minkowski

quantization and Rindler quantization can be compared without the mathematical difficulties

explained at the end of section 6.2. An article about these calculations by Daniele Colosi and

me, will be finished soon.

A particular example of a generalization to compact regions would be to consider diamond-shaped

regions in Minkowski space as was done in [156]. For that purpose we would need to know how

to deal with boundaries that consist of hypersurfaces with boundaries in the GBF. There was an

article about the GBF with corners for 2-dimensional Yang-Mills theory by Oeckl [58]. However,

for the general case it is still not clear which algebraic structure should be associated with a

hypersurface with boundaries and how the decomposition of boundaries has to be performed on

the algebraic structures of the GBF. The work presented in this section could be the testing

ground for solving this question: The hyperplane t = 0 in Minkowski spacetime is the union

of the two hypersurfaces in the right and left Rindler wedges with boundaries at the origin of

Minkowski space. The relation between the Hilbert space corresponding to the hypersurface at

t = 0 in Minkowski spacetime and the Hilbert spaces corresponding to the two parts of that

hypersurface may offer a concrete example of how to deal with such situations. In particular,
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it is of interest how the with the boundary condition at the origin of Minkowski space may be

dealt with, which has to be imposed on the field to perform the split.

The application of the GBF to black hole radiation, usually denoted as the Hawking effect, is of

course another possible generalization. In particular, it would be possible to consider a region

bounded by timelike hypersurfaces in a Schwarzschild spacetime modeling a black hole within

the framework of the GBF.

In Chapter 7, we used the background-independent geometric quantization formalism that we

introduced, originally, for the holomorphic representation of the GBF to quantize a massive

scalar field theory on a general tensorial spacetime. In our investigations, we found that to

obtain a microcausal theory, solutions have to be included in the quantization process that do

not correspond to classical, massive particles. We obtained the following statement: Lorentzian

spacetimes are the only tensorial spacetimes on which one can consistently establish a micro-

causal, unitary quantum scalar field theory fulfilling canonical commutation relations (CCRs)

such that only classically interpretable particles exist.

If one wants to go beyond Lorentzian spacetimes and at the same time work with quantum scalar

fields, one must either accept the existence of non-classical particles and interpret them or drop

the restriction to CCRs or both. Notice, that dropping the CCRs may mean loosing the spin

statistics theorem for the scalar particles.

We showed that accepting the existence of the states which are not classically interpretable leads

to mathematical problems in the background-independent QFT framework I have chosen: we

found that the complex structure does not lead to a positive metric on the space of solutions

to the field equations. Furthermore, the non-classical particles resemble the particles of the

Klein-Gordon field of imaginary mass. We reviewed briefly the ongoing research concerning the

Klein-Gordon field of imaginary mass and found that until now, there has been no quantum

theory for the imaginary mass Klein-Gordon field that is at the same time microcausal and

Lorentz invariant.

This result suggested that in the case of higher order field theories, different inertial observers

may see a different content of non-classical particles in the same state of the quantum field. Such

an effect should be in principle experimentally detectable. In particular, it suggests the existence

of a preferred frame in which the state of the field is seen as devoid of non-classical particles.

This should be a good testing ground for the framework of matter fields on general tensorial

spacetimes we developed in Chapter 4.

Finally, let me remark that it was possible to tackle to some extent the problem of finding

equations for the dynamics of the tensorial spacetime geometries itself. Using the framework we

developed above, the authors of [52] derived a set of linear partial differential equations that must

be fulfilled by the constraints defining the dynamics of a given tensorial spacetime geometry via

its coupling to matter fields. In particular, for the case of Lorentzian spacetimes, the resulting
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dynamics are those given by the Einstein-Hilbert action.

Dynamical equations for the geometrical background would be necessary to obtain generalizations

of particular tensorial spacetimes from known Lorentzian spacetimes. In particular, it would

be interesting to obtain the generalization of the Schwarzschild- and the Friedmann-Lemiatre-

Robertson-Walker-Spacetime in the context of tensorial spacetimes. That would put us in the

position to also give quantitative results besides the qualitative ones derived in this thesis. This

would help in designing experiments to test the whole framework of tensorial spacetimes.



Appendix A

An identity

Here we prove the identity

∞∑
k=0

(k + n)!

k!n!
e−2πkp/a =

1

(1− e−2πp/a)n+1
, (A.1)

We start by defining the function

f(n) :=
∞∑
s=0

(s+ n)!

s!n!
e−2πsp/a (A.2)

for which we obtain the recursion relation

f(n+ 1) =

(
1− 1

n+ 1

a

2π

d

dp

)
f(n) . (A.3)

For n = 0 we find

f(0) =
1

1− e−2πp/a
. (A.4)

So we start the induction step with the ansatz

f(n) =
1

(1− e−2πp/a)n+1
(A.5)

and find

f(n+ 1) =

(
1− 1

n+ 1

a

2π

d

dp

)
1

(1− e−2πp/a)n+1
(A.6)

=
1

(1− e−2πp/a)n+1
+

e−2πp/a

(1− e−2πp/a)n+2
=

1

(1− e−2πp/a)n+2
(A.7)

which proves that the ansatz was correct. �
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Appendix B

Well posedness

In this section we show that field theories with the dispersion relation (4.10) have a well-posed

Cauchy problem. We start with the basic definitions of hyperbolic differential operators and

some theorems from [157] and [158]. We are interested in differential operators Q(−i∂) with

constant coefficients that are d× d matrices. We say that Q(−i∂) is hyperbolic with respect to

ϑ ∈ Rn if there exists a distribution E(Q,ϑ, x) (a fundamental solution) with

Q(−i∂x)E(Q,ϑ, x) = δ(x) (B.1)

and support in some closed cone K with its vertex at the origin and x.ϑ > 0 for all x ∈ K−{0}.
When Q(−i∂x) is hyperbolic w.r.t. ϑ the distribution E(Q,ϑ, x) is unique (Lemma 3.1. of [158]).

Theorem 3.5. of [158] tells us that Q(−i∂x) is hyperbolic w.r.t. ϑ if and only if its characteristic

polynomial P (ξ) := detQ(ξ) is hyperbolic w.r.t. ϑ which is defined as follows:

Definition. Let P be a polynomial of degree r and Pr the homogeneous part of P of degree r

(the principal part of P ). Then P is called hyperbolic w.r.t. the real vector ϑ if Pr(ϑ) 6= 0 and

there exists τ0 ∈ R s.t. P (ξ + iτϑ) 6= 0 if ξ ∈ Rn and τ < τ0.

In the case of a homogeneous polynomial the above definition of hyperbolicity coincides with

the definition of hyperbolicity given above. The characteristic polynomial P telling us whether

Q(−i∂) has a well-posed Cauchy problem is of course exactly the polynomial solvability condition

in (4.10) which we identified as the dispersion relation. In the following we show that the

polynomial P = Pr − mdegP is hyperbolic with respect to ϑ if the corresponding principal

polynomial Pr is hyperbolic w.r.t. ϑ. For that purpose, we define a sort of norm of P and

introduce some notions to compare different polynomials:

P̃ (ξ, t) :=

(∑
α

|P (α)(ξ)|2t2|α|
)1/2

(B.2)

and P̃ (ξ) := P (ξ, 1) where

P (α)(η) :=
∂|α|P (η)

∂ηα1
1 · · · η

αn
n

(B.3)

Definition (Def. 3.2.1. of [157]). If P (D) and Q(D) are differential operators such that

Q̃(ξ)/P̃ (ξ) < C for all ξ ∈ Rn we shall say that Q is weaker than P and write Q ≺ P , or

97



98 APPENDIX B. WELL POSEDNESS

that P is stronger than Q and write P � Q. If P ≺ Q ≺ P , the operators are called equally

strong.

Definition (Def. 3.3.1. of [157]). We shall say that P dominates Q and write P 3 Q if

sup
ξ
Q̃(ξ, t)/P̃ (ξ, t)→ 0, t→∞ (B.4)

where ξ and t denote real variables.

With these definitions we can give the useful theorems:

Theorem B.0.1 (Thm. 5.5.7. of [157]). If the principal part Pr of P is hyperbolic w.r.t. ϑ and

P is weaker than Pr, then P is also hyperbolic w.r.t. ϑ and P and Pr are equally strong.

and

Theorem B.0.2 (Thm. 3.3.4. of [157]). In order that P ≺ P + aQ ≺ P for every complex

number a it is necessary and sufficient that P 3 Q.

Now we can give our main result of this section:

Proposition B.0.3. Let P be a homogeneous hyperbolic polynomial then Pa = P+a is hyperbolic

for all complex numbers a.

Proof: By setting Q = 1 we obtain that Q̃(ξ, t) = 1. With

P̃ (ξ, t) =

 ∑
|α|=degP

|P (α)|2t2|α| +
∑

|α|<degP

|P (α)(ξ)|2t2|α|
1/2

(B.5)

where the factor
∑
|α|=degP |P (α)|2 is positive and independent of ξ. It follows then that for fixed

positive t

inf
ξ
P̃ (ξ, t) =

 ∑
|α|=degP

|P (α)|2
1/2

t|α| (B.6)

and eventually

sup
ξ

Q̃(ξ, t)

P̃ (ξ, t)
=

 ∑
|α|=degP

|P (α)|2
−1/2

t−|α| → 0 (B.7)

for t → ∞ which proves that P dominates Q as defined in B. With theorem B.0.2 we obtain

that Pa is hyperbolic which proves the proposition. �

We have that for field theories with dispersion relation Pr(p)−mdegP = 0 and Pr a hyperbolic,

time and energy orientable polynomial the Cauchy problem is well-posed. Furthermore, the above

theorems lead directly to two corollaries concerning the support of the fundamental solutions as

(7.26) of massive field theories on HPSTs:

Corollary B.0.4. If the principal part Pr of P is hyperbolic w.r.t. ϑ and P is weaker than

Pr, then C(Pr, ϑ) ⊆ C(P,N) and C⊥(P, ϑ) ⊆ C⊥(Pr, ϑ), i.e. the support of the fundamental

solutions of P is contained in that of Pr.
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Proof: If Pr is hyperbolic w.r.t. ξ and P is weaker it follows from theorem B.0.1 that P is

hyperbolic w.r.t. ξ. This is true for all ξ ∈ C(Pr, ϑ) and hence it follows that C(Pr, ϑ) ⊆ C(P, ϑ).

That C⊥(P, ϑ) ⊆ C⊥(Pr, ϑ) follows from the definition of the dual cone. �

which gives

Corollary B.0.5. The support of the fundamental solutions of a field theory with dispersion

relation P = Pr−mdegP is contained in that of the massless field theory with dispersion relation

Pr, i.e. C(Pr, ϑ) ⊆ C(P, ϑ) and C⊥(P, ϑ) ⊆ C⊥(Pr, ϑ).
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