The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 52 of 4098
Back to Result List

Multispacecraft analysis of the properties of magnetohydrodynamic fluctuations in Sub-Alfvenic solar wind turbulence at 1 au

  • We present observations of three-dimensional magnetic power spectra in wavevector space to investigate the anisotropy and scalings of sub-Alfvenic solar wind turbulence at magnetohydrodynamic (MHD) scale using the Magnetospheric Multiscale spacecraft. The magnetic power distributions are organized in a new coordinate determined by wavevectors ((kappa) over cap) and background magnetic field ((b) over cap (0)) in Fourier space. This study utilizes two approaches to determine wavevectors: the singular value decomposition method and multispacecraft timing analysis. The combination of the two methods allows an examination of the properties of magnetic field fluctuations in terms of mode compositions without any spatiotemporal hypothesis. Observations show that fluctuations (delta B-perpendicular to 1) in the direction perpendicular to (kappa) over cap and (b) over cap (0) prominently cascade perpendicular to (b) over cap (0), and such anisotropy increases with wavenumbers. The reduced power spectra of 6.8 11 follow Goldreich-SridharWe present observations of three-dimensional magnetic power spectra in wavevector space to investigate the anisotropy and scalings of sub-Alfvenic solar wind turbulence at magnetohydrodynamic (MHD) scale using the Magnetospheric Multiscale spacecraft. The magnetic power distributions are organized in a new coordinate determined by wavevectors ((kappa) over cap) and background magnetic field ((b) over cap (0)) in Fourier space. This study utilizes two approaches to determine wavevectors: the singular value decomposition method and multispacecraft timing analysis. The combination of the two methods allows an examination of the properties of magnetic field fluctuations in terms of mode compositions without any spatiotemporal hypothesis. Observations show that fluctuations (delta B-perpendicular to 1) in the direction perpendicular to (kappa) over cap and (b) over cap (0) prominently cascade perpendicular to (b) over cap (0), and such anisotropy increases with wavenumbers. The reduced power spectra of 6.8 11 follow Goldreich-Sridhar scalings: (P) over cap (k(perpendicular to)) proportional to k(perpendicular to)(-5/3) and (P) over cap (k(parallel to)) proportional to k(parallel to)(-2). In contrast, fluctuations within the (k) over cap(b) over cap (0) plane show isotropic behaviors: perpendicular power distributions are approximately the same as parallel distributions. The reduced power spectra of fluctuations within the (k) over cap(b) over cap (0) plane follow the scalings (P) over cap (k(perpendicular to)) proportional to k(perpendicular to)(-3/2) and (P) over cap (k(parallel to)) proportional to k(parallel to)(-3/2). Comparing frequency-wavevector spectra with theoretical dispersion relations of MHD modes, we find that delta B-perpendicular to 1 are probably associated with Alfven modes. On the other hand, magnetic field fluctuations within the (k) over cap(b) over cap (0) plane more likely originate from fast modes based on their isotropic behaviors. The observations of anisotropy and scalings of different magnetic field components are consistent with the predictions of current compressible MHD theory. Moreover, for the Alfvenic component, the ratio of cascading time to the wave period is found to be a factor of a few, consistent with critical balance in the strong turbulence regime. These results are valuable for further studies of energy compositions of plasma turbulence and their effects on energetic particle transport.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Siqi Q. ZhaoORCiDGND, Huirong YanORCiDGND, Terry Z. LiuORCiD, Mingzhe LiuORCiD, Huizi WangORCiD
DOI:https://doi.org/10.3847/1538-4357/ac822e
ISSN:0004-637X
ISSN:1538-4357
Title of parent work (English):The astrophysical journal : an international review of spectroscopy and astronomical physics
Publisher:IOP Publ. Ltd.
Place of publishing:Bristol
Publication type:Article
Language:English
Date of first publication:2022/10/03
Publication year:2022
Release date:2023/11/30
Volume:937
Issue:2
Article number:102
Number of pages:14
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Physik und Astronomie
DDC classification:5 Naturwissenschaften und Mathematik / 52 Astronomie / 520 Astronomie und zugeordnete Wissenschaften
Peer review:Referiert
Publishing method:Open Access / Gold Open-Access
DOAJ gelistet
License (German):License LogoCC-BY - Namensnennung 4.0 International
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.