• Treffer 24 von 262
Zurück zur Trefferliste

Overcoming C₆₀-induced interfacial recombination in inverted perovskite solar cells by electron-transporting carborane

  • Inverted perovskite solar cells still suffer from significant non-radiative recombination losses at the perovskite surface and across the perovskite/C₆₀ interface, limiting the future development of perovskite-based single- and multi-junction photovoltaics. Therefore, more effective inter- or transport layers are urgently required. To tackle these recombination losses, we introduce ortho-carborane as an interlayer material that has a spherical molecular structure and a three-dimensional aromaticity. Based on a variety of experimental techniques, we show that ortho-carborane decorated with phenylamino groups effectively passivates the perovskite surface and essentially eliminates the non-radiative recombination loss across the perovskite/C₆₀ interface with high thermal stability. We further demonstrate the potential of carborane as an electron transport material, facilitating electron extraction while blocking holes from the interface. The resulting inverted perovskite solar cells deliver a power conversion efficiency of over 23% withInverted perovskite solar cells still suffer from significant non-radiative recombination losses at the perovskite surface and across the perovskite/C₆₀ interface, limiting the future development of perovskite-based single- and multi-junction photovoltaics. Therefore, more effective inter- or transport layers are urgently required. To tackle these recombination losses, we introduce ortho-carborane as an interlayer material that has a spherical molecular structure and a three-dimensional aromaticity. Based on a variety of experimental techniques, we show that ortho-carborane decorated with phenylamino groups effectively passivates the perovskite surface and essentially eliminates the non-radiative recombination loss across the perovskite/C₆₀ interface with high thermal stability. We further demonstrate the potential of carborane as an electron transport material, facilitating electron extraction while blocking holes from the interface. The resulting inverted perovskite solar cells deliver a power conversion efficiency of over 23% with a low non-radiative voltage loss of 110 mV, and retain >97% of the initial efficiency after 400 h of maximum power point tracking. Overall, the designed carborane based interlayer simultaneously enables passivation, electron-transport and hole-blocking and paves the way toward more efficient and stable perovskite solar cells.zeige mehrzeige weniger

Volltext Dateien herunterladen

  • zmnr1317.pdfeng
    (2085KB)

    SHA-512:761b0168008951c722320cefde0d2565ea2a1cff7eefc54734e85f5bfe1f6c670f89aaa2fbc6e71816d8ee7651710758c60a2036faecc09de56e89364508717b

Metadaten exportieren

Weitere Dienste

Suche bei Google Scholar Statistik - Anzahl der Zugriffe auf das Dokument
Metadaten
Verfasserangaben:Fangyuan YeORCiD, Shuo Zhang, Jonathan WarbyORCiD, Jiawei Wu, Emilio Gutierrez-Partida, Felix LangORCiD, Sahil ShahORCiD, Elifnaz SaglamkayaORCiD, Bowen SunORCiDGND, Fengshuo ZuORCiD, Safa Shoaee, Haifeng Wang, Burkhard Stiller, Dieter NeherORCiDGND, Wei-Hong ZhuORCiD, Martin StolterfohtORCiD, Yongzhen WuORCiD
URN:urn:nbn:de:kobv:517-opus4-587705
DOI:https://doi.org/10.25932/publishup-58770
ISSN:1866-8372
Titel des übergeordneten Werks (Deutsch):Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe
Schriftenreihe (Bandnummer):Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe (1317)
Publikationstyp:Postprint
Sprache:Englisch
Datum der Erstveröffentlichung:02.12.2022
Erscheinungsjahr:2022
Veröffentlichende Institution:Universität Potsdam
Datum der Freischaltung:13.04.2023
Ausgabe:1317
Seitenanzahl:12
Quelle:Nature Communications 13 (2022), Art. 7454, https.//doi.org/10.1038/s41467-022-34203-x
Organisationseinheiten:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Physik und Astronomie
Extern / Extern
DDC-Klassifikation:5 Naturwissenschaften und Mathematik / 53 Physik / 530 Physik
5 Naturwissenschaften und Mathematik / 54 Chemie / 540 Chemie und zugeordnete Wissenschaften
Peer Review:Referiert
Publikationsweg:Open Access / Green Open-Access
Lizenz (Deutsch):License LogoCC-BY - Namensnennung 4.0 International
Externe Anmerkung:Bibliographieeintrag der Originalveröffentlichung
Verstanden ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.