The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 51 of 3549
Back to Result List

40Ar/39Ar dating of a hydrothermal pegmatitic buddingtonite–muscovite assemblage from Volyn, Ukraine

  • We determined Ar-40/Ar-39 ages of buddingtonite, occurring together with muscovite, with the laser-ablation method. This is the first attempt to date the NH4-feldspar buddingtonite, which is typical for sedimentary-diagenetic environments of sediments, rich in organic matter, or in hydrothermal environments, associated with volcanic geyser systems. The sample is a hydrothermal breccia, coming from the Paleoproterozoic pegmatite field of the Korosten Plutonic Complex, Volyn, Ukraine. A detailed characterization by optical methods, electron microprobe analyses, backscattered electron imaging, and IR analyses showed that the buddingtonite consists of euhedral-appearing platy crystals of tens of micrometers wide, 100 or more micrometers in length, which consist of fine-grained fibers of <= 1 mu m thickness. The crystals are sector and growth zoned in terms of K-NH4-H3O content. The content of K allows for an age determination with the Ar-40/Ar-39 method, as well as in the accompanying muscovite, intimately intergrown with theWe determined Ar-40/Ar-39 ages of buddingtonite, occurring together with muscovite, with the laser-ablation method. This is the first attempt to date the NH4-feldspar buddingtonite, which is typical for sedimentary-diagenetic environments of sediments, rich in organic matter, or in hydrothermal environments, associated with volcanic geyser systems. The sample is a hydrothermal breccia, coming from the Paleoproterozoic pegmatite field of the Korosten Plutonic Complex, Volyn, Ukraine. A detailed characterization by optical methods, electron microprobe analyses, backscattered electron imaging, and IR analyses showed that the buddingtonite consists of euhedral-appearing platy crystals of tens of micrometers wide, 100 or more micrometers in length, which consist of fine-grained fibers of <= 1 mu m thickness. The crystals are sector and growth zoned in terms of K-NH4-H3O content. The content of K allows for an age determination with the Ar-40/Ar-39 method, as well as in the accompanying muscovite, intimately intergrown with the buddingtonite. The determinations on muscovite yielded an age of 1491 +/- 9 Ma, interpreted as the hydrothermal event forming the breccia. However, buddingtonite apparent ages yielded a range of 563 +/- 14 Ma down to 383 +/- 12 Ma, which are interpreted as reset ages due to Ar loss of the fibrous buddingtonite crystals during later heating. We conclude that buddingtonite is suited for Ar-40/Ar-39 age determinations as a supplementary method, together with other methods and minerals; however, it requires a detailed mineralogical characterization, and the ages will likely represent minimum ages.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Gerhard FranzGND, Masafumi SudoORCiDGND, Vladimir KhomenkoORCiD
DOI:https://doi.org/10.5194/ejm-34-7-2022
ISSN:0935-1221
ISSN:1617-4011
Title of parent work (English):European journal of mineralogy : EJM : an international journal on mineralogy, petrology, geochemistry, and related sciences
Publisher:Copernicus
Place of publishing:Göttingen
Publication type:Article
Language:English
Date of first publication:2022/01/12
Publication year:2022
Release date:2024/02/19
Volume:34
Issue:1
Number of pages:12
First page:7
Last Page:18
Funding institution:Referat für Aussenbeziehungen; Open Access Publication Fund of TU; Berlin; Deutsche Forschungsgemeinschaft [436 UKR]
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Geowissenschaften
DDC classification:5 Naturwissenschaften und Mathematik / 55 Geowissenschaften, Geologie / 550 Geowissenschaften
Peer review:Referiert
Publishing method:Open Access / Gold Open-Access
DOAJ gelistet
License (German):License LogoCC-BY - Namensnennung 4.0 International
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.