• search hit 16 of 3138
Back to Result List

Rupture directivity in 3D inferred from acoustic emissions events in a mine-scale hydraulic fracturing experiment

  • Rupture directivity, implying a predominant earthquake rupture propagation direction, is typically inferred upon the identification of 2D azimuthal patterns of seismic observations for weak to large earthquakes using surface-monitoring networks. However, the recent increase of 3D monitoring networks deployed in the shallow subsurface and underground laboratories toward the monitoring of microseismicity allows to extend the directivity analysis to 3D modeling, beyond the usual range of magnitudes. The high-quality full waveforms recorded for the largest, decimeter-scale acoustic emission (AE) events during a meter-scale hydraulic fracturing experiment in granites at similar to 410 m depth allow us to resolve the apparent durations observed at each AE sensor to analyze 3D-directivity effects. Unilateral and (asymmetric) bilateral ruptures are then characterized by the introduction of a parameter kappa, representing the angle between the directivity vector and the station vector. While the cloud of AE activity indicates the planes of theRupture directivity, implying a predominant earthquake rupture propagation direction, is typically inferred upon the identification of 2D azimuthal patterns of seismic observations for weak to large earthquakes using surface-monitoring networks. However, the recent increase of 3D monitoring networks deployed in the shallow subsurface and underground laboratories toward the monitoring of microseismicity allows to extend the directivity analysis to 3D modeling, beyond the usual range of magnitudes. The high-quality full waveforms recorded for the largest, decimeter-scale acoustic emission (AE) events during a meter-scale hydraulic fracturing experiment in granites at similar to 410 m depth allow us to resolve the apparent durations observed at each AE sensor to analyze 3D-directivity effects. Unilateral and (asymmetric) bilateral ruptures are then characterized by the introduction of a parameter kappa, representing the angle between the directivity vector and the station vector. While the cloud of AE activity indicates the planes of the hydrofractures, the resolved directivity vectors show off-plane orientations, indicating that rupture planes of microfractures on a scale of centimeters have different geometries. Our results reveal a general alignment of the rupture directivity with the orientation of the minimum horizontal stress, implying that not only the slip direction but also the fracture growth produced by the fluid injections is controlled by the local stress conditions.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:José Ángel López-CominoORCiD, Simone CescaORCiD, Peter NiemzORCiDGND, Torsten DahmORCiDGND, Arno ZangORCiDGND
DOI:https://doi.org/10.3389/feart.2021.670757
ISSN:2296-6463
Title of parent work (English):Frontiers in Earth Science
Publisher:Frontiers Media
Place of publishing:Lausanne
Publication type:Article
Language:English
Date of first publication:2021/05/17
Publication year:2021
Release date:2024/06/13
Tag:acoustic emissions; directivity; earthquake source; fracturing; hydraulic; induced seismicity
Volume:9
Article number:670757
Number of pages:9
Funding institution:European UnionEuropean Commission [754446, 691728]; UGR Research and Knowledge Transfer Found -Athenea3i; Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)German Research Foundation (DFG) [407141557]; EU project PostMinQuake, RFCS [899192]
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Geowissenschaften
DDC classification:5 Naturwissenschaften und Mathematik / 55 Geowissenschaften, Geologie / 550 Geowissenschaften
Peer review:Referiert
Publishing method:Open Access / Gold Open-Access
DOAJ gelistet
License (German):License LogoCC-BY - Namensnennung 4.0 International
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.