The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 55 of 380
Back to Result List

Influenza A virus matrix protein M1

Influenza-A-Virus-Matrixprotein M1

  • Influenza A virus (IAV) is a pathogen responsible for severe seasonal epidemics threatening human and animal populations every year. During the viral assembly process in the infected cells, the plasma membrane (PM) has to bend in localized regions into a vesicle towards the extracellular side. Studies in cellular models have proposed that different viral proteins might be responsible for inducing membrane curvature in this context (including M1), but a clear consensus has not been reached. M1 is the most abundant protein in IAV particles. It plays an important role in virus assembly and budding at the PM. M1 is recruited to the host cell membrane where it associates with lipids and other viral proteins. However, the details of M1 interactions with the cellular PM, as well as M1-mediated membrane bending at the budozone, have not been clarified. In this work, we used several experimental approaches to analyze M1-lipids and M1-M1 interactions. By performing SPR analysis, we quantified membrane association for full-length M1 andInfluenza A virus (IAV) is a pathogen responsible for severe seasonal epidemics threatening human and animal populations every year. During the viral assembly process in the infected cells, the plasma membrane (PM) has to bend in localized regions into a vesicle towards the extracellular side. Studies in cellular models have proposed that different viral proteins might be responsible for inducing membrane curvature in this context (including M1), but a clear consensus has not been reached. M1 is the most abundant protein in IAV particles. It plays an important role in virus assembly and budding at the PM. M1 is recruited to the host cell membrane where it associates with lipids and other viral proteins. However, the details of M1 interactions with the cellular PM, as well as M1-mediated membrane bending at the budozone, have not been clarified. In this work, we used several experimental approaches to analyze M1-lipids and M1-M1 interactions. By performing SPR analysis, we quantified membrane association for full-length M1 and different genetically engineered M1 constructs (i.e., N- and C-terminally truncated constructs and a mutant of the polybasic region). This allowed us to obtain novel information on the protein regions mediating M1 binding to membranes. By using fluorescence microscopy, cryogenic transmission electron microscopy (cryo-TEM), and three-dimensional (3D) tomography (cryo-ET), we showed that M1 is indeed able to cause membrane deformation on vesicles containing negatively-charged lipids, in the absence of other viral components. Further, sFCS analysis proved that simple protein binding is not sufficient to induce membrane restructuring. Rather, it appears that stable M1-M1 interactions and multimer formation are required to alter the bilayer three-dimensional structure through the formation of a protein scaffold. Finally, to mimic the budding mechanism in cells that arise by the lateral organization of the virus membrane components on lipid raft domains, we created vesicles with lipid domains. Our results showed that local binding of M1 to spatial confined acidic lipids within membrane domains of vesicles led to local M1 inward curvature.show moreshow less
  • Das Influenza-A-Virus (IAV) ist ein Erreger, der für schwere saisonale Epidemien verantwortlich ist, die jedes Jahr Menschen und Tiere bedrohen. Während des viralen Assemblierungsprozesses in den infizierten Zellen muss sich die Plasmamembran (PM) an bestimmten Stellen zu einem Vesikel zur extrazellulären Seite biegen. Studien an zellulären Modellen haben ergeben, dass verschiedene virale Proteine (einschließlich M1) für die Induktion der Membrankrümmung in diesem Zusammenhang verantwortlich sein könnten, ein eindeutiger Konsens wurde jedoch nicht erreicht. M1 ist das am häufigsten vorkommende Protein in IAV-Partikeln. Es spielt eine wichtige Rolle bei der Virusassemblierung und Knospung. M1 wird zur Wirtszellmembran rekrutiert, wo es sich mit Lipiden und anderen viralen Proteinen assoziiert. Die Einzelheiten der Interaktionen von M1 mit der zellulären PM sowie die M1-vermittelte Membranverbiegung am Ort der Virusfreisetzung sind jedoch noch nicht geklärt. In dieser Arbeit wurden mehrere experimentelle Ansätze zur Analyse vonDas Influenza-A-Virus (IAV) ist ein Erreger, der für schwere saisonale Epidemien verantwortlich ist, die jedes Jahr Menschen und Tiere bedrohen. Während des viralen Assemblierungsprozesses in den infizierten Zellen muss sich die Plasmamembran (PM) an bestimmten Stellen zu einem Vesikel zur extrazellulären Seite biegen. Studien an zellulären Modellen haben ergeben, dass verschiedene virale Proteine (einschließlich M1) für die Induktion der Membrankrümmung in diesem Zusammenhang verantwortlich sein könnten, ein eindeutiger Konsens wurde jedoch nicht erreicht. M1 ist das am häufigsten vorkommende Protein in IAV-Partikeln. Es spielt eine wichtige Rolle bei der Virusassemblierung und Knospung. M1 wird zur Wirtszellmembran rekrutiert, wo es sich mit Lipiden und anderen viralen Proteinen assoziiert. Die Einzelheiten der Interaktionen von M1 mit der zellulären PM sowie die M1-vermittelte Membranverbiegung am Ort der Virusfreisetzung sind jedoch noch nicht geklärt. In dieser Arbeit wurden mehrere experimentelle Ansätze zur Analyse von M1-Lipiden und M1-M1 Wechselwirkungen untersucht. Mittels SPR-Analyse wurde die Membranassoziation für M1 in voller Länge und verschiedene gentechnisch veränderte M1-Konstrukte (d. h. N- und C-terminal verkürzte Konstrukte und eine Mutante der polybasischen Region) quantifiziert; so konnten neue Erkenntnisse über die Proteinregionen, die die Bindung von M1 an Membranen steuern, gewonnen werden. Mit Hilfe der Fluoreszenzmikroskopie, kryogener Transmissionselektronenmikroskopie (cryo-TEM) und dreidimensionaler (3D) Tomographie (cryo-ET) konnten wir zeigen, dass M1 tatsächlich in der Lage ist, die Membran von Vesikeln, die negativ geladene Lipide enthalten, zu deformieren (und zwar ohne andere virale Komponenten). Außerdem bewies die sFCS-Analyse, dass eine einfache Proteinbindung nicht ausreicht, um eine Umstrukturierung der Membran zu bewirken. Vielmehr scheint es, dass stabile M1-M1-Wechselwirkungen und die Bildung von Multimeren erforderlich sind, um die dreidimensionale Struktur der Doppelschicht Struktur durch die Bildung eines Proteingerüsts zu verändern. Um schließlich den Knospungsmechanismus zu imitieren, der durch die laterale Organisation der Virusmembrankomponenten auf Lipid-Raft-Domänen entsteht, haben wir Vesikel mit Lipiddomänen erzeugt. Unsere Ergebnisse zeigten, dass die lokale Bindung von M1 an räumlich begrenzte saure Lipide innerhalb der Membrandomänen der Vesikel zu einer lokalen Krümmung von M1 nach innen führt.show moreshow less

Download full text files

  • SHA-512:59aef12b98a28c9428ea2466e12fcee48d2b9f7456103bbc386598d32d20338139dbf6826248d91ef6a208481bdf45915d7e7e97bdba1b1ca4a0088d97e83ce8

Export metadata

Metadaten
Author details:Ismail DahmaniORCiD
URN:urn:nbn:de:kobv:517-opus4-527409
DOI:https://doi.org/10.25932/publishup-52740
Subtitle (English):structural determinants of membrane binding and protein- induced deformation
Subtitle (German):strukturelle Determinanten der Membranbindung und protein-induzierte Deformation
Supervisor(s):Salvatore Chiantia, Michael Veit, Oleg V. Batishchev
Publication type:Doctoral Thesis
Language:English
Year of first publication:2021
Publication year:2021
Publishing institution:Universität Potsdam
Granting institution:Universität Potsdam
Date of final exam:2021/02/10
Release date:2022/03/31
Tag:Budozone; Epidemie; Epidemien; GUV; IAV-Partikel; Influenza; Influenza-A-Virus; Lipide; M1-Lipide; M1-M1-Interaktion; Membranbindung; Membrandeformation; Pathogen; Plasmamembran; Proteinbindung; Riesenvesikel; Vesikel; Virus; Virusassemblierung, Virion; riesige unilamellare Vesikel
Budozone; Epidemic; Epidemics; GUV; Giant Vesicles; Giant unilamellar vesicles; IAV particles; Influenza; Influenza A virus; Lipids; M1-M1 interaction; M1-lipids; Membrane deformation; Pathogen; Plasma membrane; Vesicle; Viral assembly; Virion; Virus; membrane binding; protein binding
Number of pages:XI, 147
RVK - Regensburg classification:WF 4650, WD 5400, WE 5501
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Biochemie und Biologie
DDC classification:5 Naturwissenschaften und Mathematik / 57 Biowissenschaften; Biologie / 570 Biowissenschaften; Biologie
MSC classification:92-XX BIOLOGY AND OTHER NATURAL SCIENCES
License (German):License LogoKeine öffentliche Lizenz: Unter Urheberrechtsschutz
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.