The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 20 of 380
Back to Result List

Developing an integrated platform for predicting niche and range dynamics

  • Species are adapted to the environment they live in. Today, most environments are subjected to rapid global changes induced by human activity, most prominently land cover and climate changes. Such transformations can cause adjustments or disruptions in various eco-evolutionary processes. The repercussions of this can appear at the population level as shifted ranges and altered abundance patterns. This is where global change effects on species are usually detected first. To understand how eco-evolutionary processes act and interact to generate patterns of range and abundance and how these processes themselves are influenced by environmental conditions, spatially-explicit models provide effective tools. They estimate a species’ niche as the set of environmental conditions in which it can persist. However, the currently most commonly used models rely on static correlative associations that are established between a set of spatial predictors and observed species distributions. For this, they assume stationary conditions and areSpecies are adapted to the environment they live in. Today, most environments are subjected to rapid global changes induced by human activity, most prominently land cover and climate changes. Such transformations can cause adjustments or disruptions in various eco-evolutionary processes. The repercussions of this can appear at the population level as shifted ranges and altered abundance patterns. This is where global change effects on species are usually detected first. To understand how eco-evolutionary processes act and interact to generate patterns of range and abundance and how these processes themselves are influenced by environmental conditions, spatially-explicit models provide effective tools. They estimate a species’ niche as the set of environmental conditions in which it can persist. However, the currently most commonly used models rely on static correlative associations that are established between a set of spatial predictors and observed species distributions. For this, they assume stationary conditions and are therefore unsuitable in contexts of global change. Better equipped are process-based models that explicitly implement algorithmic representations of eco-evolutionary mechanisms and evaluate their joint dynamics. These models have long been regarded as difficult to parameterise, but an increased data availability and improved methods for data integration lessen this challenge. Hence, the goal of this thesis is to further develop process-based models, integrate them into a complete modelling workflow, and provide the tools and guidance for their successful application. With my thesis, I presented an integrated platform for spatially-explicit eco-evolutionary modelling and provided a workflow for their inverse calibration to observational data. In the first chapter, I introduced RangeShiftR, a software tool that implements an individual-based modelling platform for the statistical programming language R. Its open-source licensing, extensive help pages and available tutorials make it accessible to a wide audience. In the second chapter, I demonstrated a comprehensive workflow for the specification, calibration and validation of RangeShiftR by the example of the red kite in Switzerland. The integration of heterogeneous data sources, such as literature and monitoring data, allowed to successfully calibrate the model. It was then used to make validated, spatio-temporal predictions of future red kite abundance. The presented workflow can be adopted to any study species if data is available. In the third chapter, I extended RangeShiftR to directly link demographic processes to climatic predictors. This allowed me to explore the climate-change responses of eight Swiss breeding birds in more detail. Specifically, the model could identify the most influential climatic predictors, delineate areas of projected demographic suitability, and attribute current population trends to contemporary climate change. My work shows that the application of complex, process-based models in conservation-relevant contexts is feasible, utilising available tools and data. Such models can be successfully calibrated and outperform other currently used modelling approaches in terms of predictive accuracy. Their projections can be used to predict future abundances or to assess alternative conservation scenarios. They further improve our mechanistic understanding of niche and range dynamics under climate change. However, only fully mechanistic models, that include all relevant processes, allow to precisely disentangle the effects of single processes on observed abundances. In this respect, the RangeShiftR model still has potential for further extensions that implement missing influential processes, such as species interactions. Dynamic, process-based models are needed to adequately model a dynamic reality. My work contributes towards the advancement, integration and dissemination of such models. This will facilitate numeric, model-based approaches for species assessments, generate ecological insights and strengthen the reliability of predictions on large spatial scales under changing conditions.show moreshow less
  • Arten sind an ihren jeweiligen Lebensraum angepasst, doch viele Lebensräume sind heute einem globalen Wandel unterworfen. Dieser äußert sich vor allem in Veränderungen von Landnutzung und Klima, welche durch menschliche Aktivitäten verursacht werden und ganze Ökosysteme in ihrem Gefüge stören können. Störungen der grundlegenden öko-evolutionären Prozesse können auf der Populationsebene in Form von veränderten Verbreitungsgebieten und Häufigkeitsmustern sichtbar werden. Hier werden die Auswirkungen des globalen Wandels auf eine Art oftmals zuerst beobachtet. Um zu untersuchen, wie die Wirkung und Wechselwirkung der verschiedenen öko-evolutionären Prozesse die beobachteten Verbreitungs- und Häufigkeitsmuster erzeugen, und wie diese Prozesse wiederum von Umweltbedingungen beeinflusst werden, stellen räumlich explizite Modelle wirksame Instrumente dar. Sie beschreiben die ökologische Nische einer Art, also die Gesamtheit aller Umweltbedingungen, unter denen die Art fortbestehen kann. Die derzeit am häufigsten verwendeten ModelleArten sind an ihren jeweiligen Lebensraum angepasst, doch viele Lebensräume sind heute einem globalen Wandel unterworfen. Dieser äußert sich vor allem in Veränderungen von Landnutzung und Klima, welche durch menschliche Aktivitäten verursacht werden und ganze Ökosysteme in ihrem Gefüge stören können. Störungen der grundlegenden öko-evolutionären Prozesse können auf der Populationsebene in Form von veränderten Verbreitungsgebieten und Häufigkeitsmustern sichtbar werden. Hier werden die Auswirkungen des globalen Wandels auf eine Art oftmals zuerst beobachtet. Um zu untersuchen, wie die Wirkung und Wechselwirkung der verschiedenen öko-evolutionären Prozesse die beobachteten Verbreitungs- und Häufigkeitsmuster erzeugen, und wie diese Prozesse wiederum von Umweltbedingungen beeinflusst werden, stellen räumlich explizite Modelle wirksame Instrumente dar. Sie beschreiben die ökologische Nische einer Art, also die Gesamtheit aller Umweltbedingungen, unter denen die Art fortbestehen kann. Die derzeit am häufigsten verwendeten Modelle stützen sich auf statische, korrelative Zusammenhänge, die zwischen bestimmten räumlichen Prädiktoren und den beobachteten Artverteilungen hergestellt werden. Allerdings werden dabei stationäre Bedingungen angenommen, was sie im Kontext des globalen Wandels ungeeignet macht. Deutlich besser geeignet sind prozessbasierte Modelle, welche explizite, algorithmische Repräsentationen von ökologischen Prozessen beinhalten und deren gemeinsame Dynamik berechnen. Solche Modelle galten lange Zeit als schwierig zu parametrisieren, doch die zunehmende Verfügbarkeit von Beobachtungsdaten sowie die verbesserten Methoden zur Datenintegration machen ihre Verwendung zunehmend praktikabel. Das Ziel der vorliegenden Arbeit ist es, diese prozessbasierten Modelle weiterzuentwickeln, sie in umfassende Modellierungsabläufe einzubinden, sowie Software und Anleitungen für ihre erfolgreiche Anwendung verfügbar zu machen. In meiner Dissertation präsentiere ich eine integrierte Plattform für räumlich-explizite, öko-evolutionäre Modellierung und entwickle einen Arbeitsablauf für dessen inverse Kalibrierung an Beobachtungsdaten. Im ersten Kapitel stelle ich RangeShiftR vor: eine Software, die eine individuenbasierte Modellierungsplattform für die statistische Programmiersprache R implementiert. Durch die Open-Source-Lizenzierung, umfangreichen Hilfeseiten und online verfügbaren Tutorials ist RangeShiftR einem breiten Publikum zugänglich. Im zweiten Kapitel demonstriere ich einen vollständigen Modellierungsablauf am Beispiel des Rotmilans in der Schweiz, der die Spezifikation, Kalibrierung und Validierung von RangeShiftR umfasst.Durch die Integration heterogener Datenquellen, wie Literatur- und Monitoringdaten, konnte das Modell erfolgreich kalibriert werden. Damit konnten anschließend validierte, raum-zeitliche Vorhersagen über das Vorkommen des Rotmilans erstellt und die dafür relevanten Prozesse identifiziert werden. Der vorgestellte Arbeitsablauf kann auf andere Arten übertragen werden, sofern geeignete Daten verfügbar sind. Im dritten Kapitel habe ich RangeShiftR erweitert, sodass demografische Prozessraten direkt mit Klimavariablen verknüpft werden können. Dies ermöglichte es, die Reaktionen von acht Schweizer Brutvogelarten auf den Klimawandel genauer zu untersuchen. Insbesondere konnte das Modell die einflussreichsten klimatischen Faktoren identifizieren, demografisch geeignete Gebiete abgrenzen und aktuelle Populationstrends auf den bisherigen Klimawandel zurückführen. Meine Arbeit zeigt, dass die Anwendung komplexer, prozessbasierter Modelle in naturschutzrelevanten Kontexten mit verfügbaren Daten möglich ist. Solche Modelle können erfolgreich kalibriert werden und andere, derzeit verwendete Modellierungsansätze in Bezug auf ihre Vorhersagegenauigkeit übertreffen. Ihre Projektionen können zur Vorhersage zukünftiger Artvorkommen und zur Einschätzung alternativer Naturschutzmaßnahmen verwendet werden. Sie verbessern außerdem unser mechanistisches Verständnis von Nischen- und Verbreitungsdynamiken unter dem Einfluss des Klimawandels. Jedoch ermöglichen nur vollständig prozessbasierte Modelle, die alle relevanten Prozesse vereinen, eine korrekte Aufschlüsselung der Auswirkungen einzelner Prozesse auf die beobachteten Abundanzen. In dieser Hinsicht hat das RangeShiftR-Modell noch Potenzial für Weiterentwicklungen, um fehlende, einflussreiche Prozesse hinzuzufügen, wie zum Beispiel die Interaktionen zwischen Arten. Um eine dynamische Realität adäquat abbilden zu können, werden dynamische, prozessbasierte Modelle benötigt. Meine Arbeit leistet einen Beitrag zur Weiterentwicklung, Integration und Verbreitung solcher Modelle und stärkt somit die Anwendung numerischer, modellbasierter Methoden für die Bewertung des Zustands von Arten, die Untersuchung ökologischer Zusammenhänge und die Steigerung der Zuverlässigkeit von Vorhersagen auf großen räumlichen Skalen unter Umweltveränderungen.show moreshow less

Download full text files

  • SHA-512:2faaebb1801f123eb46a7ec0bf06fa0236041666669df4fe660918939a41faacfcfc82b0a23eb5f72e104d4f43e63f3d9a4b534c9ae686210b07e11921bad293

Export metadata

Metadaten
Author details:Anne-Kathleen MalchowORCiDGND
URN:urn:nbn:de:kobv:517-opus4-602737
DOI:https://doi.org/10.25932/publishup-60273
Subtitle (English):inverse calibration of spatially-explicit eco-evolutionary models
translated title (German):Entwicklung einer integrierten Modellierungs-Plattform zur Vorhersage von Nischen- und Verbreitungs-dynamiken: Inverse Kalibrierung räumlich-expliziter öko-evolutionärer Modelle
Further contributing person(s):Leonie Wenz
Reviewer(s):Damaris ZurellORCiDGND, Tobias KrügerORCiDGND, Tamara Münkemöller
Supervisor(s):Damaris Zurell, Tobias Krüger
Publication type:Doctoral Thesis
Language:English
Year of first publication:2023
Publication year:2023
Publishing institution:Universität Potsdam
Granting institution:Universität Potsdam
Date of final exam:2023/06/02
Release date:2023/08/09
Tag:Arealverschiebungen; Artverbreitungsmodelle; Bayes'sche Inferenz; Populationsdynamik; individuen-basierte Modellierung; ökologische Modellierung
Bayesian inference; ecological modelling; individual-based modelling; population dynamics; range shifts; species distribution modelling
Number of pages:xiv, 169
RVK - Regensburg classification:WH 2500, WK 1500, WI 1500
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Biochemie und Biologie
DDC classification:5 Naturwissenschaften und Mathematik / 57 Biowissenschaften; Biologie / 570 Biowissenschaften; Biologie
MSC classification:92-XX BIOLOGY AND OTHER NATURAL SCIENCES / 92-02 Research exposition (monographs, survey articles)
License (German):License LogoCC-BY - Namensnennung 4.0 International
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.