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Abstract

Species are adapted to the environment they live in. Today, most environments are
subjected to rapid global changes induced by human activity, most prominently land
cover and climate changes. Such transformations can cause adjustments or disruptions in
various eco-evolutionary processes. The repercussions of this can appear at the population
level as shifted ranges and altered abundance patterns. This is where global change effects

on species are usually detected first.

To understand how eco-evolutionary processes act and interact to generate patterns of
range and abundance and how these processes themselves are influenced by environmental
conditions, spatially-explicit models provide effective tools. They estimate a species’ niche
as the set of environmental conditions in which it can persist. However, the currently
most commonly used models rely on static correlative associations that are established
between a set of spatial predictors and observed species distributions. For this, they assume
stationary conditions and are therefore unsuitable in contexts of global change. Better
equipped are process-based models that explicitly implement algorithmic representations
of eco-evolutionary mechanisms and evaluate their joint dynamics. These models have
long been regarded as difficult to parameterise, but an increased data availability and
improved methods for data integration lessen this challenge. Hence, the goal of this thesis
is to further develop process-based models, integrate them into a complete modelling

workflow, and provide the tools and guidance for their successful application.

With my thesis, | present an integrated platform for spatially-explicit eco-evolutionary
modelling and provid a workflow for their inverse calibration to observational data. In
the first chapter, | introduc RangeShiftR, a software tool that implements an individual-
based modelling platform for the statistical programming language R. Its open-source
licensing, extensive help pages and available tutorials make it accessible to a wide audience.
In the second chapter, | demonstrat a comprehensive workflow for the specification,
calibration and validation of RangeShiftR by the example of the red kite in Switzerland.

The integration of heterogeneous data sources, such as literature and monitoring data,

Xi



ABSTRACT

allowed to successfully calibrate the model. It was then used to make validated, spatio-
temporal projections of red kite abundance and identify their most influential processes.
The presented workflow can be adopted to any study species if data is available. In the
third chapter, | extended RangeShiftR to directly link demographic processes to climatic
predictors. This allowed me to explore the climate-change responses of eight Swiss breeding
birds in more detail. Specifically, the model could identify the most influential climatic
predictors, delineate areas of projected demographic suitability, and attribute current
population trends to contemporary climate change.

My work shows that the application of complex, process-based models in conservation-
relevant contexts is feasible, utilising available tools and data. Such models can be success-
fully calibrated and outperform other currently used modelling approaches in terms of
predictive accuracy. Their projections can be used to predict future abundances or to assess
alternative conservation scenarios. They further improve our mechanistic understanding
of niche and range dynamics under climate change. However, only fully mechanistic
models, that include all relevant processes, allow to precisely disentangle the effects of
single processes on observed abundances. In this respect, the RangeShiftR model still
has potential for further extensions that implement missing influential processes, such as
species interactions.

Dynamic, process-based models are needed to adequately model a dynamic reality. My
work contributes towards the advancement, integration and dissemination of such models.
This will facilitate numeric, model-based approaches for species assessments, generate
ecological insights and strengthen the reliability of predictions on large spatial scales under

changing conditions.

xii



Zusammenfassung

Arten sind an ihren jeweiligen Lebensraum angepasst, doch viele Lebensraume sind heu-
te einem globalen Wandel unterworfen. Dieser auflert sich vor allem in Veranderungen
von Landnutzung und Klima, welche durch menschliche Aktivitaten verursacht werden
und ganze Okosysteme in ihrem Geflige stéren kénnen. Stérungen der grundlegenden
6ko-evolutionaren Prozesse kbnnen auf der Populationsebene in Form von veranderten
Verbreitungsgebieten und Haufigkeitsmustern sichtbar werden. Hier werden die Auswir-

kungen des globalen Wandels auf eine Art oftmals zuerst beobachtet.

Um zu untersuchen, wie die Wirkung und Wechselwirkung der verschiedenen 6ko-
evolutiondren Prozesse die beobachteten Verbreitungs- und Haufigkeitsmuster erzeugen,
und wie diese Prozesse wiederum von Umweltbedingungen beeinflusst werden, stellen
raumlich explizite Modelle wirksame Instrumente dar. Sie beschreiben die dkologische
Nische einer Art, also die Gesamtheit aller Umweltbedingungen, unter denen die Art
fortbestehen kann. Die derzeit am haufigsten verwendeten Modelle stiitzen sich auf stati-
sche, korrelative Zusammenhange, die zwischen bestimmten raumlichen Pradiktoren und
den beobachteten Artverteilungen hergestellt werden. Allerdings werden dabei stationére
Bedingungen angenommen, was sie im Kontext des globalen Wandels ungeeignet macht.
Deutlich besser geeignet sind prozessbasierte Modelle, welche explizite, algorithmische
Reprasentationen von 6kologischen Prozessen beinhalten und deren gemeinsame Dynamik
berechnen. Solche Modelle galten lange Zeit als schwierig zu parametrisieren, doch die
zunehmende Verfiigbarkeit von Beobachtungsdaten sowie die verbesserten Methoden zur
Datenintegration machen ihre Verwendung zunehmend praktikabel. Das Ziel der vorlie-
genden Arbeit ist es, diese prozessbasierten Modelle weiterzuentwickeln, sie in umfassende
Modellierungsablaufe einzubinden, sowie Software und Anleitungen fiir ihre erfolgreiche

Anwendung verfiigbar zu machen.

In meiner Dissertation prasentiere ich eine integrierte Plattform fiir raumlich-explizite,
6ko-evolutiondre Modellierung und entwickle einen Arbeitsablauf fir dessen inverse Kali-

brierung an Beobachtungsdaten. Im ersten Kapitel stelle ich RangeShiftR vor: eine Software,

xiii



ZUSAMMENFASSUNG

die eine individuenbasierte Modellierungsplattform fiir die statistische Programmierspra-
che R implementiert. Durch die Open-Source-Lizenzierung, umfangreichen Hilfeseiten
und online verfiigharen Tutorials ist RangeShiftR einem breiten Publikum zuganglich. Im
zweiten Kapitel demonstriere ich einen vollstandigen Modellierungsablauf am Beispiel
des Rotmilans in der Schweiz, der die Spezifikation, Kalibrierung und Validierung von
RangeShiftR umfasst. Durch die Integration heterogener Datenquellen, wie Literatur- und
Monitoringdaten, konnte das Modell erfolgreich kalibriert werden. Damit konnten anschlie-
3end validierte, raum-zeitliche Vorhersagen tiber das Vorkommen des Rotmilans erstellt
und die dafiir relevanten Prozesse identifiziert werden. Der vorgestellte Arbeitsablauf kann
auf andere Arten tibertragen werden, sofern geeignete Daten verfiigbar sind. Im dritten
Kapitel habe ich RangeShiftR erweitert, sodass demografische Prozessraten direkt mit
Klimavariablen verkniipft werden kénnen. Dies ermdglichte es, die Reaktionen von acht
Schweizer Brutvogelarten auf den Klimawandel genauer zu untersuchen. Insbesondere
konnte das Modell die einflussreichsten klimatischen Faktoren identifizieren, demogra-
fisch geeignete Gebiete abgrenzen und aktuelle Populationstrends auf den bisherigen
Klimawandel zurtickfithren.

Meine Arbeit zeigt, dass die Anwendung komplexer, prozessbasierter Modelle in natur-
schutzrelevanten Kontexten mit verfiigbaren Daten moglich ist. Solche Modelle kénnen
erfolgreich kalibriert werden und andere, derzeit verwendete Modellierungsansatze in Be-
zug auf ihre Vorhersagegenauigkeit Gbertreffen. Ihre Projektionen konnen zur Vorhersage
zukiinftiger Artvorkommen und zur Einschatzung alternativer Naturschutzmaf3nahmen ver-
wendet werden. Sie verbessern auflerdem unser mechanistisches Verstandnis von Nischen-
und Verbreitungsdynamiken unter dem Einfluss des Klimawandels. Jedoch erméglichen
nur vollstandig prozessbasierte Modelle, die alle relevanten Prozesse vereinen, eine korrekte
Aufschlisselung der Auswirkungen einzelner Prozesse auf die beobachteten Abundanzen.
In dieser Hinsicht hat das RangeShiftR-Modell noch Potenzial fur Weiterentwicklungen,
um fehlende, einflussreiche Prozesse hinzuzufiigen, wie zum Beispiel die Interaktionen
zwischen Arten.

Um eine dynamische Realitiat adaquat abbilden zu konnen, werden dynamische, pro-
zessbasierte Modelle benotigt. Meine Arbeit leistet einen Beitrag zur Weiterentwicklung,
Integration und Verbreitung solcher Modelle und starkt somit die Anwendung numerischer,
modellbasierter Methoden fiir die Bewertung des Zustands von Arten, die Untersuchung
6kologischer Zusammenhange und die Steigerung der Zuverlassigkeit von Vorhersagen

auf groflen raumlichen Skalen unter Umweltveranderungen.
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Chapter 1

Introduction

1.1. Global transitions

Anthropogenic threats

Humans are altering the atmosphere and surface of Earth at an accelerating pace (Steffen,
Broadgate, et al.,[2015). As our industrial and agricultural activities are becoming dominant
factors in shaping our planet’s state and appearance, it has been proposed to define a
new geological epoch characterised by global anthropogenic influence. The Anthropocene
marks an age of drastic changes in climate and atmospheric composition (Lewis & Maslin,
2015), after the Holocene had seen approximately 10 000 years of relative stability. This
rapidly changing environment entails disadvantageous consequences for us humans as
well as many other organisms.

Anthropogenic global effects are embodied in six threats on nature and human well-
being: land- and sea-use change, resource extraction, pollution, invasive and alien species,
and climate change (Balvanera et al.,[2019). 14% of their combined impact is attributed to
climate change by the IPBES Global Assessment, after land/sea-use change (30%) and direct
exploitation (23%) (IPBES, |2019). Climate change is rated as the most prevalent current
threat and the largest potential threat by the IUCN World Heritage Outlook (Osipova
et al.,[2020). It further exacerbates the adverse effects of all other threats (IPBES,|2019).

Responses to threats

Responses of species and whole ecosystems to these direct drivers have been detected
in terrestrial, marine as well as freshwater environments around the globe and on all
organisational levels (Parmesan,[2006; Scheffers et al.,[2016). Among the observed responses
are changes in population dynamics (Selwood et al.,|2015) and abundance (Martay et
al., [2017), range shifts (I.-C. Chen et al.,2011), altered phenology (Menzel et al., [2020),
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impoverished and novel community compositions (Kampichler et al.,|2012; Singer et al.,
2013) and perturbed ecosystem functions (N. B. Grimm et al.,2013).

Responses in spatio-temporal abundance patterns are relatively well documented as
they are detectable with common monitoring schemes. Local population declines and
extinctions are reported across continents and taxa (Tilman et al.,2017; Wiens, 2016) and
overall population trends are measured by indicators like the Living Planet Index (WWF,
2020). Many species also counter climate change effects by shifting their distributions
towards the poles, into deeper waters, or towards higher altitudes, thereby tracking their
required climatic conditions (Lenoir & Svenning,|2015). Most notably, such range shifts
are established for mobile and comparably well monitored taxa like birds (Maggini et al.,
2011; Brommer et al.,|2012; Thomas & Lennon, [1999).

Threatening ourselves

The effects of anthropogenic threats on nature amount to a beginning biodiversity crisis
(Convention on Biological Diversity - CBD, [2020) with yet unpredictable implications
for humanity. As many human societies trade off current against future well-being, the
ongoing degradation of Earth’s ecosystems causes disruptions in essential ecosystem
services such as provisioning of food, water and resources as well as stabilising climate
and buffering weather extremes (Sarukhan et al.,[2005).

Action plans for reversing ecosystem degradation and transitioning to a sustainable
pathway have been devised, but require fundamental transformations. A comprehensive
framework for this is given by the UN’s Sustainable Development Goals and the 2050
Vision for Biodiversity (CBD, |2020). The necessary effort to reach these goals may be
encouraged by a range of successful conservation actions that provide proof of concept
that a reversal of current biodiversity trends is possible (Hoffmann et al.,|2010; Bolam et al.,
2021; Duarte et al.,|2020).

1.2. Modelling species distributions

A cross-scale problem

Understanding regional, population-level shifts in species abundance is crucial because
it can provide a cross-scale link between global forcings and local responses, even before
large-scale biodiversity changes are observed (Dornelas et al.,2014). Such insights can
support potential mitigation and management measures whose planning depends on
small-scale information, since they are usually carried out at smaller spatial scales and,

furthermore, are often time-critical (Guisan et al.,2013). A well-established, direct and
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quantitative link between global-scale human activities, that drive anthropogenic threats,
and their local and regional effects on biodiversity can help to communicate the manifold
and severe consequences of global change and thus emphasise the urgency to counteract.
Therefore, a sound scientific basis for the representation and analysis of observed and
expected spatio-temporal population patterns is needed and can be provided by species

distribution models.

Models as a tool

Models of natural systems are an abstraction and no full representation of reality
(Fig.[1.1). They isolate a set of considered phenomena to describe and leave everything else
outside their system boundary (Getz et al.,2018). Deciding where exactly this boundary is
meaningfully drawn requires a structural understanding of the study system and often
determines whether a model can be useful. Further, profound process understanding is
necessary to formulate adequate representations of the modelled processes. Incorporating
too much detail can lead to overparameterisation and non-identifiability, whereas missing
important aspects can restrict model flexibility to an extent where it fails to adequately
reflect reality (Bell & Schlaepfer,|2016; Cabral et al.,2017). This structural and process
understanding, on which model building is based, is often formulated as theories and

conceptual frameworks that delineate central entities, state spaces and processes.

Niche theory

A basic framework for the modelling of species distributions is the concept of the ecolog-
ical niche (MacArthur,[1968). The ecological niche defines a volume in a space spanned by a
set of environmental variables in which a species occurs or can persist, respectively, depend-
ing on whether it models the realised or potential distribution (Soberén & Nakamura,|2009).
The types of considered abiotic and biotic variables as well as their spatio-temporal scales,
however, vary by the exact definition of the niche type (Chase & Leibold,2009). Hutchinson
(1957) introduced the notions of the fundamental and the realised niche. A refinement
of this concept for species distribution modelling was proposed by Soberdn (2007), who
distinguishes between the Grinellian (fundamental) and Eltonian (realised) niche and their
different spatial scales. The fundamental niche represents large-scale, non-interacting
climatic conditions, that describe physiological limits (the bioclimatic envelope, Pearson &
Dawson,|2003). The realised niche, in contrast, includes small-scale, interacting variables
such as consumable resources and biotic interactions (both antagonistic and synergistic).
The intersection of fundamental and realised niche, projected into geographical space, is

then considered to describe the species’ potential distribution.

Inferring the realised niche (and even more so, the fundamental niche) from observed
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Figure 1.1.: Models as a tool to formalise reality. By selecting a set of environmental
predictors, the true complexity of the causal structure is reduced to a few
dimensions. The natural eco-evolutionary processes are separated into defined
mechanisms with analytical or algorithmic representations. The resulting
species distribution model generates predictions which are compared with the
true species abundances for both calibration and validation.

occurrences in hindered by several effects (Jiménez-Valverde et al.,[2008): The potential
distribution is in many cases not fully occupied by a species, for example if it is still in the
process of colonising suitable areas or if fundamental dispersal barriers are present (Jackson
& Overpeck,|2000). Further, species can be present outside their potential distribution
due to source—sink dynamics (Pulliam, 2000). Lastly, species are not always detected
even tough they do occur due to imperfect detection. These effects cause a mismatch
between the environmental conditions under which species are detected and their theoretic
realised niche. Therefore, without further understanding of these confounding effects, the
ecological niche can not be fully inferred from observed presences and absences (Sillero,
2011). As an alternative, a species’ niche can be derived from ecological principles that
account for combined effects of biotic and abiotic factors using mechanistic niche models
(Kearney, 2006).

Avenues for species distribution modelling

A multitude of approaches to species distribution modelling has been developed to
describe, understand, and predict a species’ geographic distribution (Buckley et al.,2010;
Dormann et al.,|2012; Schurr et al.,[2012; Ehrlén & W. F. Morris, 2015} Singer et al.,[2016}
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Fordham et al.,|2018; Briscoe et al.,[2019). While also spatially-implicit models exist that are
useful for studying population dynamics and dispersal in patchy or fragmented landscapes
(Hanski, [1994; McFarland et al., [2012), | will focus on spatially-explicit models in the
following. Such distribution models are useful tools for testing ecological hypotheses,
gaining insights into a species’ ecology and estimating (parts of) its niche. They also
have significance in conservation planning, as they are used to identify suitable sites for
additional monitoring efforts or for management interventions such as area protection,
habitat restoration or species reintroductions and to assess invasion potential (Guisan et al.,
2013). Species distribution models (SDMs) are usually classified into correlative SDMs
and process-based (or mechanistic) SDMs, although this is not a clear-cut distinction and

intermediate forms exist (Dormann et al.,|2012).

Correlative species distribution models

Correlative SDMs have been the standard for a long time (Aradjo et al.,[2019), as they
work with common data types (presence-only or presence-absence data), are comparably
easy to apply, and are backed by published tools and user recommendations. Depending
on the context, correlative SDMs are also known as habitat suitability models, bioclimatic
envelope models or ecological niche models (Aradjo & Peterson, [2012). Their central
method is to correlate the observed spatial distribution of a species with a number of
selected environmental predictors (usually large-scale bioclimatic and land cover variables).
To achieve this, many techniques exist, such as regression models and machine-learning
algorithms, that differ in the shapes of relationship to fit (Guisan & Zimmermann, [2000;
Elith & Leathwick,|2009). The fitted relationship is interpolated (or extrapolated) to un-
sampled environments and projected to geographic space in order to make predictions of
past, current or future distributions. This step makes the crucial assumption that the envi-
ronment is sufficiently described by the selected predictors. Therefore, predictors should
be chosen which have a causal relationship with the modelled distribution. Otherwise, the
fitted correlation structure is unlikely to continue into unsampled region of the predictor
space, leading to low model transferability (Fourcade et al.,[2018). Further, niche theory
tells us that a mismatch can even arise between a causal —but incomplete- set of predictors
and observed distribution, if large-scale non-interacting variables are used to describe
a distribution that is shaped by additional local-scale processes such as dispersal and
species interactions (Guisan & Thuiller,[2005). Another assumption made by correlative
SDMEs is that species distribution dynamics are quasi-stationary, that is, an equilibrium
distribution is always maintained and tracked instantaneously when the environment

changes. Therefore, dynamic distributions can only be implicitly described by evolving
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the predictors, but transient dynamics are not representable (Aratjo & Peterson,|2012).
When projecting to other times or places, there is the additional risk of extrapolation error.
For example, the fitted relationship may not validly extend to unsampled conditions or it
may be different for other populations of the same species or change through time due
to evolution and adaptation (Wiens & Graham, [2005). These limitations of correlative
SDMs make them inadequate for modelling species’ responses to global change, and more

advanced approaches have been devised.

Process-based species distribution models

Recent years have seen an effort towards modelling species distributions more dynami-
cally and more mechanistically with process-based SDMs (Q. Chen et al.,2011; Connolly
et al.,[2017; Lurgi et al.,2015; Cabral et al.,|2017; Briscoe et al.,[2019). Process-based (or
mechanistic) SDMs aim to represent the mechanisms that underlie the formation of species
distributions by explicitly formulating representations of the acting processes (Higgins
et al.,[2012). Urban et al. (2016) proposed six key eco-evolutionary processes that should
be be considered when modelling range dynamics: (i) physiology; (ii) demography, life
history, and phenology; (iii) species interactions; (iv) evolutionary potential and population
differentiation; (v) dispersal, colonization, and range dynamics; and (vi) responses to envi-
ronmental variation. With this integration of ecological theory and causal relationships,
process-based SDMs are expected to be more readily transferable to non-analog conditions

and to provide more robust predictions under extrapolation into the future or past.

Ideally, a complete model would incorporate all six eco-evolutionary processes. Since
they act and interact on different ecological, spatial and temporal scales, however, this
is a challenging endeavour. Currently existing models, therefore, each focus on a certain
subset of processes only. For example, eco-physiological models describe the physiological
responses and constraints of organisms, effectively delineating their fundamental niche
(Kearney & Porter,2009). Another example are hybrid models that supplement a correlative
SDMs with selected processes (Franklin, 2010), such as local population dynamics (Keith
et al., [2008), dispersal (Brotons et al.,|2012; Smolik et al.,[2010), or trophic interactions
(Pellissier et al.,|2013). Thanks to the added dynamic population model, hybrid models
can represent abundance (instead of occurrence only) and transients, which makes them
suitable for modelling non-equilibrium situations like species invasions or reintroductions
(Gallien et al.,[2010). However, they still rely heavily on the underlying correlative SDM
and thus inherit their weaknesses in transferability. Another approach are dynamic range
models, which directly relate environmental predictors with local demographic rates and

include explicit dispersal and observer models (Schurr et al.,2012; Pagel & Schurr,|2012).
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This allows to disentangle the effects of demography and dispersal, so that the species’
niche can be inferred from the fitted model as the predictor-space volume for which
demographic growth is positive. (Still, which part of the niche is described exactly depends
on the selected predictors.) The inclusion of dispersal further allows to extract information
on locations of sink and source populations (Gilroy & Edwards,[2017) and the observer

component increases the ability to reflect the structure of monitoring data.

The above-mentioned model types operate principally on the population scale. They
can be extended to include intra-specific trait variation and adaptation on the individual
level (Moran et al.,2016) and inter-specific interaction on the community level (Pellissier
et al.,2013; Kissling & Schleuning,|2015)). Progress towards this scale-integration is being

made by mechanistic general ecosystem models (Harfoot et al.,|2014).

Process-based SDMs are still, despite their clear advantages for modelling species
distributions and range shifts, much less commonly applied than correlative SDMs. There
are several potential reasons for this (Briscoe et al.,2019): Process-based SDMs are usually
more difficult to construct and need more programming work. Their specification can be
challenging as specific ecological knowledge is required to define analytical or algorithmic
process representations and certain types of data are necessary to identify the values of
their process parameters. Further, less supporting resources are available for process-based
SDMs than correlative SDMs, such as accessible software tools and published guidelines

or workflows.

Individual-based modelling

A powerful modelling framework that can incorporate complex and interacting eco-
evolutionary processes is provided by individual-based models (IBMs; Railsback & V. Grimm
(2019); sometimes also called agent-based models). In a bottom-up approach, key processes
like reproduction, survival, movement, and species interactions are described and evaluated
at the individual level and can include stochasticity, individual behaviour, intra-specific
variation, inheritance and (genetic) adaptation to local conditions (DeAngelis & Mooij,
2005). IBMs are inherently difficult to treat analytically because of the central role of
interactions among the individual agents (but see Ovaskainen et al.,[2014). Therefore, IBMs
are usually scaled up to the population level by numerical simulation. This allows to reveal
large-scale abundance patterns and investigate collective phenomena like emergence and
self-organisation. IBMs thus allow for very complex, species- and case-specific formulations
of a modelling problem. Examples include the host-tree selection of a pine beetle (Chubaty
et al., |2009) or the complex life history of Atlantic salmon (Hedger et al., 2013), which

demonstrate the vast potential for complex model building. Since IBMs have a comparably
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long history (that originated from the study of cellular automata and thus dates back
to the very beginning of numerical simulation) and are used in many different fields of
complexity science, such as epidemiology, sociology and economics, a profound body of
literature on their theory and application exists. However, the often highly case-specific
nature of IBMs also means that they are usually built without the intention of application
to other study systems and are thus rarely re-used, which increases the programming
workload for each new model. Advances towards standardising the conceptualisation and
documentation of IBMs have been made by the development of the "Overview, Design
concepts, and Details” (ODD) protocol (V. Grimm et al., 2006} V. Grimm et al., 2010} V.
Grimm et al.,[2020). Another common problem is, that because of their high flexibility
IBMs can be made arbitrarily complex. However, care must be taken to avoid including

more processes than are parameterisable from available data (Manson et al.,|2020).

1.3. Parametrisation and Calibration

Direct and inverse parametrisation

Fully specifying a model encompasses not only the choice of model type and structure,
but also the identification of appropriate values for all model parameters. One option to
achieve this is direct parametrisation, where a parameter value is directly measured from
the respective isolated process. For example, a population model may include a *fecundity’
parameter that describes the number of offspring per season. This value can be obtained
from experiments or observations and subsequently be used in the model. Here, process-
based models have the advantage that their parameters have clear ecological meanings
and can in principle be measured. In contrast, the parameters of correlative models are not
accessible in this way and are thus always inferred from observed occurrences. This second
option is inverse (or indirect) parametrisation and is often simply called ’'model fitting’. It
uses data of the response-type of the model which, in the case of species distribution models,
is spatial (and temporal, for dynamic models) data of species occurrence or abundance.
Most correlative models use maximum likelihood, maximum entropy, or machine learning
approaches for this step, where model fit is measured by an objective function that is then
optimised. The optimisation result is a point estimate, i.e. the set of parameter values that
yielded the best model fit, and is often reported as is. In order to quantify its uncertainty,
additional steps are necessary since no information about the relative performance of this

best parametrisation is retained during the optimisation.
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Bayesian calibration

An elegant framework, in which direct and inverse parametrisation are combined and
quantification of parameter uncertainty is integrated, is given by Bayesian calibration (Gel-
man et al.,|2013). In this framework, parameter specifications are expressed as probability
distributions, that quantify the relative support for all possible parameter values under a
given state of knowledge. The available direct knowledge on model parameters is expressed
as a prior distribution. It can be understood as reflecting the state of knowledge before
seeing the response data. The response data constitutes the indirect knowledge and is
taken into account by the likelihood function. The likelihood measures the probability with
which the model reproduces the data, given a parameterisation. The posterior distribution
is then calculated via Bayes’ rule and represents the support for all possible parameter
values from both types of data sources, direct and indirect, combined. This approach
provides a consistent quantification of parameter uncertainty which originates from the
input data, is expressed in the prior and the likelihood, and propagated to the posterior

via Bayes’ rule.

In most applications of Bayesian inference, Bayes’ rule can not be evaluated in a closed
form for the whole parameter domain, either because already the likelihood can not be
evaluated or because the integral in the denominator (the normalisation constant) can not
be solved analytically. Instead, the posterior can be approximated by repeated sampling
via Monte Carlo methods (Luengo et al.,[2020). In the former case, when the likelihood
function itself can not be evaluated (because it is either not known or it is intractable), so-
called approximate or likelihood-free Bayesian inference is used where the sampling target
is only an approximation of the true posterior (Beaumont,|2010). In the latter case, when
the likelihood function is tractable but the integral in Bayes’ rule can not be solved, the
sampling target is the exact posterior that will be obtained in the limit of infinite sampling
(so-called exact Bayesian inference). Exact Bayesian inference has been demonstrated
for analytical population-based models for various ecological applications (Ellison,|2004;
Gillespie & Golightly,[2010; Rosenbaum et al.,|[2019). For individual-based models, however,
this often proves challenging as they possess intractable likelihoods due to the represented
complex and stochastic processes and their hidden states (but see Johnson & Briggs,2011).
A solution to this are simulation-based methods (Hartig et al.,[2011). One possibility is to
define an informal likelihood that describes an error distribution and compares the IBM
output with the data. The likelihood constructed in this way is usually stochastic as most
IBMs are stochastic, In order to still be able to use Monte Carlo methods for sampling
the posterior, pseudo-marginal methods can be employed (Andrieu & G. O. Roberts, |2009;

Warne et al., 2020). They guarantee that even using an unbiased likelihood estimate,
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e.g. obtained by taking the mean over repeated stoachstic likelihood evaluations, lets
the Monte Carlo sample converge to the exact posterior. Simulation-based calibration
methods exist for both likelihood-free calibration (e.g. an IBM for little owls; Hauenstein
et al.,[2019) and exact calibration (Hartig et al., 2011, e.g. an IBM for a simulated species;
Kattwinkel & Reichert,|2017). In the context of Bayesian inference, adequate models are
thus used to extract relevant information from monitoring data that informs process rates

and, in this way, generates ecological knowledge.

1.4. In summary

Usefulness of process-based models

Reliable models of current species distributions and future range shifts are needed
to forecast the effects of environmental change on biodiversity and to anticipate and
mitigate biodiversity loss. Range shifts arise from the interaction of local population
dynamics and dispersal. Therefore, dynamic spatially-explicit process-based population
models are appropriate tools for the task. They can represent transient dynamics that
arise from slow responses to rapid environmental change and they model patterns of
abundance which constitute important information for spatial population assessment
(Oliver et al., 2012} Yin & He,|2014). Further, models that explicitly include ecological
processes are robust under extrapolation to novel conditions, because they represent
fundamental mechanisms of a species’ biology that are unlikely to be altered. For their
mechanistic underpinnings, process-based SDMs rely on expert knowledge and ecological
theory to specify the model structure and the functional representation of processes.
A suitable framework for their parametrisation is given by Bayesian calibration, which
provide the means to efficiently and consistently integrate heterogeneous data to inform
the values of process parameters as well as their uncertainties. The efficient use of data
can be decisive in ecological applications, where sparse and uncertain data sources are
common. Further, the quantification of parameter uncertainty is crucial to be able to
make useful predictions of future species distributions (Zylstra & Zipkin,|2021). Only if
predictions include an assessment of their reliability are they trustworthy enough to be a

basis for conservation planning and decision making.

Objective and structure of this thesis

The overarching objective of this thesis was to contribute to the development of tools
and workflows for the application of spatially-explicit, eco-evolutionary models of species’

niche dynamics that are well founded in ecological theory and provide improved forecasts
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of range shifts and future distributions.

| pursued this objective within three independent articles. The first article (Chapter [2)
introduced the RangeShiftR package, a software that implements an individual-based
modelling platform for spatial eco-evolutionary dynamics for the widely-used statistical
programming language R. | used the RangeShiftR simulation model in the subsequent
two research articles to model the spatial population dynamics of Swiss breeding birds. In
my second article (Chapter[3), | demonstrated how to specify, calibrate and validate the
RangeShiftR IBM with heterogeneous data by the example of the Swiss red kite population.
This allowed to improve estimates of the red kite’s demographic rates and to identify
the processes that contribute most to the currently observed population increase. In my
third article (Chapter[d), | extended the RangeShiftR IBM to explicitly model demography-
environment relationships that relat demographic rates (survival and fecundity) to climatic
predictors. | applied this model to eight Swiss breeding birds using the modelling workflow
presented in Chapter 3] With the calibrated models I created spatial assessments of
climatic suitability and attributed current population trends to recent climate change. The
article concludes with a discussion of the interpretations and limitations of the model.
Chapter 5 of this thesis provides a synthesis of my work, a discussion of related research,

and future perspectives.
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Malchow, A.-K., Fandos, G., Kormann, U., Griebler, M., Kéry, M., Hartig, F., and
Zurell, D. (2023): ’Fitting an individual-based model of spatial population dynamics to
long-term monitoring data”. Revision submitted to: Ecological Applications. Preprint
in bioRxiv, |https://doi.org/10.1101/2022.09.26.509574.

Malchow, A.-K., Hartig, F., Reeg, J., Kéry, M., and Zurell, D. (2023): "Demography-
environment relationships improve mechanistic understanding of range dynamics
under climate change”. Philosophical Transactions B 378 20220194, https://doi.org/
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and abstracts can be found in Appendix[A]
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Chapter 2

RangeShiftR: an R package for
individual-based simulation of
spatial eco-evolutionary dynamics
and species’ responses to

environmental changes

Abstract

Reliably modelling the demographic and distributional responses of a species to environ-
mental changes can be crucial for successful conservation and management planning.
Process-based models have the potential to achieve this goal, but so far they remain under-
used for predictions of species’ distributions. Individual-based models offer the additional
capability to model inter-individual variation and evolutionary dynamics and thus capture
adaptive responses to environmental change.

We present RangeShiftR, an R implementation of a flexible individual-based modelling
platform which simulates eco-evolutionary dynamics in a spatially explicit way. The pack-
age provides flexible and fast simulations by making the software RangeShifter available
for the widely used statistical programming platform R. The package features additional
auxiliary functions to support model specification and analysis of results. We provide an
outline of the package’s functionality, describe the underlying model structure with its
main components and present a short example.

RangeShiftR offers substantial model complexity, especially for the demographic and
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dispersal processes. It comes with elaborate tutorials and comprehensive documentation
to facilitate learning the software and provide help at all levels. As the core code is
implemented in C++, the computations are fast. The complete source code is published
under a public licence, making adaptations and contributions feasible.

The RangeShiftR package facilitates the application of individual-based and mechanistic
modelling to eco-evolutionary questions by operating a flexible and powerful simulation
model from R. It allows effortless interoperation with existing packages to create stream-
lined workflows that can include data preparation, integrated model specification, and
results analysis. Moreover, the implementation in R strengthens the potential for coupling

RangeShiftR with other models.

2.1. Introduction

Under anthropogenic exploitation and rapid environmental changes, one of the most
urgent challenges biologists face today is to understand and predict if and how species
will persist, by adapting or undergoing changes in their geographic range (McGill et al.,
2015; IPBES, [2019). To infer a species’ niche from data and make predictions in space and
time, correlative species distribution models (SDMs) are commonly used tools (Guisan &
Zimmermann, |2000; Elith et al.,[2008; Qiao et al.,|2015). The widespread use of SDMs has
been facilitated by accessible and ready-to-use software, most notably Maxent (Phillips
et al.,[2017) and dedicated R packages such as biomod2 (Thuiller et al.,|[2009) and dismo
(Hijmans et al.,|2017). However, these methods often incorporate little ecological theory
(Guisan & Thuiller, 2005; Austin, [2007) and usually require making assumptions that
are routinely violated in natural observed systems (Elith et al., 2010; Jarnevich et al.,
2015; Martinez-Minaya et al., [2018). For example, SDMs assume that species are at
equilibrium with their environment and ignore any transient dynamics (Zurell et al.,2016).
An alternative that avoids some of these drawbacks is the development and application of
process-based (or mechanistic) models, which aim to simulate relevant eco-evolutionary
processes such as dispersal, demography and evolution (Urban et al.,[2016; Cabral et al.,
2017). Despite repeated calls for more mechanistic understanding of range dynamics
(Kearney & Porter, |[2009; Schurr et al.,[2012; Connolly et al.,2017), such models remain
underused, arguably due to challenges such as poor availability of the data needed for
parametrisation and restricted accessibility to the software required to run them (Dormann
et al.,|2012; Briscoe et al.,[2019).

The ambition for a more prominent representation of process-based models in ecological

research led to the development of the standalone software RangeShifter (Bocedi et al.,
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2014), a flexible individual-based model (IBM) that simulates spatial eco-evolutionary
dynamics for a given species. It models population dynamics, dispersal, and evolution as
interacting processes, organised within a modular structure in which each process has a
number of modelling options. This makes RangeShifter a highly adaptable platform with
a wide range of applications, including conducting population viability or connectivity
analyses (Aben et al., [2016; Henry et al.,|2017) and assessing the dynamics of genetic
variation across complex landscapes. The new RangeShifter version 2.0 (Bocedi et al.,[2021)
adds novel features including the option for dynamic landscapes and a completely revised
genetics module. Here, we present RangeShiftR version 1.0, a package that implements the
RangeShifter 2.0 simulation in R (R Core Team,|2023), making it multi-platform software.

With the RangeShiftR package, we take a step towards more accessible and integrated
use of mechanistic individual-based models. RangeShiftR extends the existing suite of
R packages for ecological modelling, which includes software like the spatially explicit
population models steps (Visintin et al.,[2020) and demoniche (Nenzén et al.,[2012), by a
complete and flexible IBM with detailed dispersal dynamics, thus expanding the range of
representable ecological levels from the population to the individual. The package augments
the RangeShifter platform with functionality to assist in model specification and output
visualisation. As part of the R environment, RangeShiftR offers the powerful potential to
interoperate with other packages in order to form integrated workflows, drawing on the
extensive functionality for data preparation, output analysis, and easy reporting that is
available for R. RangeShiftR is published under the public licence GPLv3 and hence may
be used, modified and shared under the terms of the GPLv3. In order to provide easy
access for all users, the package includes extensive built-in documentation and comes with
elaborate tutorials presented on the accompanying website (https://rangeshifter.github.io/
RangeshittR-tutorials/).

2.2. Package Structure and Implementation

The RangeShiftR package inherits its model structure from the underlying RangeShifter
platform (Fig.[2.1). It models the abundance and distribution of a population of a single
species by explicitly and stochastically simulating three main interacting processes —
demography, dispersal, and evolution (genetics) — at the individual level. The simulation is
based on a regularly gridded landscape and runs over discrete yearly or seasonal time steps.
Various levels of output can be written to text files at specified time intervals during the
simulation, recording data including abundance, individual traits, connectivity between

patches, or dispersal paths.
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Figure 2.1.: Conceptual overview of a RangeShiftR simulation. The user provides input
maps to characterise the landscape, and specifies parameter options that
define the three interacting processes of demography, dispersal and evolution
(genetics). One option for representing each process is symbolised here as an
exemplary model configuration. For example, demography is represented using
a stage-structured model with three stages. Different outputs are generated
during the simulation and stored in files.

To reflect this conceptual structure, the RangeShiftR package contains a suite of functions
and classes (Fig.[2.2), comprising three groups: model functions to set up the simulation,
helper functions to assist with parameter specification, and output functions to process
and visualise the simulation output. The helper and output functions are provided to
enhance usability and constitute unique functionality of the R package not available in
RangeShifter.

Model functions A RangeShiftR model is defined by the assembly of various mod-
ules, each of which is represented in R by its own class. The model functions are their
corresponding class constructors: They are used to create objects that hold the given
(numeric) values of all model parameters relevant to the respective module. The species

model, i.e. the part of the model that describes the study species, comprises three modules
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that represent the distinct simulated processes and are constructed by Demography(), Dis-
persal() and the optional Genetics(). Modules may have optional or obligatory sub-modules:
demography can have a StageStructure(), and dispersal always comprises three phases
(J. M. ). Travis et al.,|2012), namely Emigration(), one of the ‘Transfer’ sub-modules, and
Settlement(). The ‘Transfer’ class is implemented as a virtual class that can take the form
of one of the three possible sub-modules DispersalKernel(), SMS() (stochastic movement
simulator; Palmer et al.,[2011) or CorrRW() (correlated random walk). The choice of the
sub-modules thus determines the structure of the species model. The parameters of each
model function set the corresponding model parameters, e.g. the maximum growth rate
of the population, ‘Rmax’, in Demography(). Apart from the species model, there is a
module that handles the input of the landscape, providing two alternative model functions
for importing a raster map, ImportedLandscape(), or generating an artificial landscape
internally, ArtificialLandscape(). Two more modules determine the Initialisation() of the
simulation as well as some general Simulation() settings.

The choices made when selecting certain (sub-)modules and specifying their parameters
collectively define a RangeShiftR simulation. However, there exists a number of interdepen-
dencies among the modules as well as certain compatibility restrictions with some options
(Bocedi et al.,|2014). To cover them, there is a ParameterMaster class whose constructor
RSsim() takes and consolidates all components of the model and gives informative error
messages or warnings to the user in case of incompatible parameter settings. An object
of this class defines a RangeShiftR simulation uniquely and can optionally contain a set
seed for the random number generator. Using RunRS() on the ParameterMaster runs the
simulation. The set of model functions constitutes the R interface to the C++ core code,
which offers the functionalities of the RangeShifter platform for use from within R while
ensuring high computational performance. To integrate the C++ code, the package uses
Rcpp (> 1.0.0; Eddelbuettel et al.,[2011).

The run time and memory requirements of a RangeShifter simulation can vary widely.
Both depend on the number of modelled individuals as well as the represented detail. For
example, simulating a movement process involves many more steps than using a dispersal
kernel for the transfer phase, and including the genetics module means that the genome
of each individual has to be stored. The writing of output files contributes significantly to

the run time, and it is recommended to generate only necessary output.

Helper functions To aid parameter specification, RangeShiftR includes additional
helper functions to estimate or visualise the effect of some parameters (Fig.[2.2). The func-
tion plotProbs() can be used on a demography or dispersal (sub-)module to plot the shape of

17



CHAPTER 2. RANGESHIFTR

density-dependent relationships, for example the fecundity or emigration probability. Most
modules in a RangeShiftR simulation influence each other either directly or indirectly, and
certain parameters may have implications in various places. Therefore, it can prove chal-
lenging to express knowledge about the system by directly specifying separate numerical
parameter values. For example, specifying a stage-structured demographic model requires
estimates for at least one parameter that determines the nature of density-dependence
in survival or fecundity. We typically will not have a direct estimate for that parameter,
but are much more likely to have an estimate of overall carrying capacity or equilibrium
density, which in the model is an emergent outcome of all the demographic parameters.
Thus, to guide the choice of suitable parameter values, RangeShiftR contains the novel
function getLocalisedEquilPop() to estimate the combined effect of density-dependent
population dynamics on a closed population (cf. example below). Finally, the function
validateRSparams() can be used on any (sub-)module to check if all parameters are set

within their admissible ranges.

Output functions All simulation output is written to text files in the formats provided
by the RangeShifter platform. The RangeShiftR package also includes dedicated output
functions that facilitate the inspection of these results by processing and visualising the
output files. These include plotOcc() and plotAbund() to show the simulated time series of
occupancy and abundance, ColonisationsStats() for the computation of spatial statistics
such as the occupancy probability and the time to colonisation, and SMSpathLengths() to
display the distribution of dispersal path lengths. A novel output option is provided by the
creation of dispersal heatmaps for SMS in the form of raster files, which show the number
of dispersers that passed through each location and can be readily processed and plotted
with R. Some output functions use basic functionality from the raster package (> 3.0.0;
Hijmans & Etten, 2016) to generate and plot maps. All documentation pages use Rdpack

(> 0.7) to include references.

2.3. Simulation Modules

In the modular structure of RangeShiftR, each module represents a different aspect of the
simulation (Fig.[2.2), allowing for adaptable levels of model complexity. Below, the main
modules are described briefly. For comprehensive documentation, covering all parameters
and options, we refer to the package documentation and the RangeShifter manual (Bocedi
et al. (2014) and Bocedi et al. (2021) https://rangeshifter.github.io).
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Figure 2.2.: RangeShiftR function overview. The first column introduces the various mod-
ules with their respective icons, as reference to Fig.[2.1] The rounded boxes and
arrows in columns 2 and 3 indicate model functions and their respective hier-
archical relations. They are class constructors used to define the sub-modules
(column 2, yellow) and main modules (column 3, green), which can be combined
to a parameter master (blue) to compose the RangeShiftR model. The function
RunRS (grey) then starts the simulation. The angled boxes in the last column
indicate helper functions that are related to their respective modules. The
angled boxes in the bottom row are separate from the columns and itemise the
output functions that can be used for processing the simulation results.
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Landscape A RangeShiftR simulation runs on a cartesian grid in which each cell
holds information about its cover. This is described by a single layer that represents cells
of either a land class or a habitat quality score ranging from zero to 100%. To relate
this layer to a cell’s habitat suitability for the study species, a value for its demographic
density-dependence must be provided: either one for each land class or that for a 100%
habitat cell.

There are two variants of the landscape module: Usually, the landscape map will be
imported from an ASCII raster file but it can also be artificially created by a built-in
function. Imported landscapes have additional options: they can be patch-based, in which
case a second raster file is required to indicate each cell’s patch ID. Additionally, a raster of
dispersal resistance values and a presence-absence raster of the initial distribution can be
loaded. With the new functionality of dynamic landscapes introduced in RangeShifter 2.0,
the cover, patch and dispersal resistance layer can be changed at any given year during

the simulation.

Demography The modelled demography is determined by two main choices: Firstly,
the population can have overlapping or non-overlapping generations, meaning it can be
stage-structured or not. In the former case, the sub-processes fecundity, survival and
development are explicitly simulated each year, whereas in the latter case only fecundity
is modelled. Depending on this choice, the value of the demographic density-dependence
defined in the landscape module is interpreted differently: for a stage-structured population
it represents the strength of demographic density-dependence (1/b), which can act on all
three sub-processes, while for a non-structured population it is interpreted as the carrying
capacity (K). A stage-structure is an optional sub-module that is represented by its own class
and that can be added to the demography module and which allows various parameters in
the demography and dispersal modules to be stage-specific. Secondly, the population can
be modelled as sexual or asexual. In sexual models, individuals are characterised by their
sex so that various parameters can be sex-specific and the reproductive dynamics may
include an explicit mating system. Asexual models can be applied to asexually reproducing
species or to species for which only the female sex is modelled as they are assumed to be

the limiting sex for the demographic or spatial dynamics.

Dispersal The dispersal module has three obligatory sub-modules, which represent
the explicitly modelled phases of dispersal (J. M. J. Travis et al.,2012). The first phase is
emigration, in which an individual decides whether to leave its natal cell or patch. During

the subsequent transfer phase the individual moves through the landscape, which can
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be simulated by three alternative methods: either with a dispersal kernel or with explicit
consideration of the movement processes using the stochastic movement simulator (SMS;
Palmer et al.,2011) or a correlated random walk. The dispersal event is concluded with the
settlement phase, when the individual stops in a different habitable cell or patch. Individuals
are allowed to disperse only once during their lives. Various dispersal attributes can be, if
applicable, sex- and stage-specific, and the emigration and settlement probabilities can
additionally be density-dependent (using the value for demographic density-dependence
given in the landscape module). The modelling options for the settlement decision depend

on the chosen transfer method and may include an option of mate finding.

Genetics Individuals can carry a genome that they inherit from their parent(s) at
birth. The genome may consist of multiple autosomal loci that can either be neutral
or coding for traits (Bocedi et al., [2021). Currently, only the dispersal parameters can
be treated as heritable traits, which allows evolution of dispersal strategies. The genetic
architecture is highly flexible and processes such as recombination, mutation and pleiotropy
can be explicitly modelled. Modelling of neutral loci allows explicit and individual-based
population genetic simulations to address questions on how environmental features and
processes, in interaction with population dynamics and dispersal behaviours, shape the

genetic structure and diversity of populations (Manel et al.,{2003).

Initialisation The initial state of the simulation in the starting year can be defined in
three different ways: with an initial distribution map specified in the landscape module,
with a list of individuals and their location, or at a given population density in randomly

selected locations.

Simulation This module specifies the general simulation settings like the number
of simulated time steps (years) and replicates, the types of generated output, and some
more specialised options, such as imposing a (shifting) gradient or enabling environmental

stochasticity.

2.4. Using RangeShiftR

The RangeShiftR 1.0 package can be readily installed from the github repository ‘Range-
Shifter/RangeShiftR-package’. As a widely applicable simulation software, RangeShiftR
aims to provide easy access via a range of resources to support the user: all functions are

comprehensively documented on R help pages, an extensive user manual is available online,

21



CHAPTER 2. RANGESHIFTR

and the webpage (https://rangeshifter.github.io) features a support forum as well as a
collection of detailed tutorials that illustrate the model’s scope and introduce the available
modelling options. The tutorials include adaptations of the three original RangeShifter ex-
amples (Bocedi et al.,[2014), accompanied by sample code for analysis and visualisation. Ad-
ditionally, we provide a fourth tutorial that demonstrates novel features of RangeShifter 2.0
(Bocedi et al.,|2021) by simulating the range dynamics of a species in a changing landscape.
Here, we present a shortened form of this fourth tutorial as an example to introduce the
RangeShiftR syntax. All required input files can be found on our webpage or downloaded

directly via https://rangeshifter.github.io/RangeshiftR-tutorials/files/Tutorial3_Inputs.zip,

Landscape When using the novel RangeShifter feature of dynamic landscapes, we
specify the file names of the changing habitat maps, their corresponding patch files, and
the order of years in which these become effective. All maps are imported as ASCII
rasters by the function ImportedLandscape(). Further arguments are the (optional) map of
initial distribution, the number of land cover types ‘Nhabitats’, as well as their respective
demographic density-dependence ‘K_or_DensDep’.

landnames <— c( "map_01l.asc",
"map_02.asc",
"map_03.asc",
"map_04.asc"
pchs <— c( "patches_01l.asc",
"patches_02.asc",
"patches_03.asc",
"patches_03.asc"
land <— ImportedLandscape( LandscapeFile = landnames,
PatchFile = pchs,
DynamicLandYears = c(0, 80, 110, 140),
SpDistFile = "init_dist.asc",
Nhabitats = 5,
Resolution = 10,
K_or_DensDep = c(125, 0, 150, 75, 0),
SpDistResolution = 10)

Demography The population model is set up to use explicit sexes and a stage-
structure, i.e. generations are overlapping. In the Demography() module the coded argu-
ment ‘ReproductionType’ determines whether both sexes are modelled. The StageStructure()
sub-module takes the transition matrix and can set optional density-dependencies on the

sub-processes of fecundity, survival and development.
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TraMa <— matrix( c( 0.0, 0.0, 0.0, 5.0 ,
1.0, 0.1, 0.0, 0.0 ,
0.0, 0.6, 0.2, 0.0 ,
0.0, 0.0, 0.45, 0.85),

ncol = 4, byrow = TRUE)

demog <— Demography( ReproductionType = 1,
StageStruct = StageStructure(
Stages = 4,
TransMatrix = TraMa,
FecDensDep = T,
SurvDensDep = T,
SurvDensCoeff = 0.4) )

The helper function getLocalisedEquilPop() can assist in understanding how the demo-
graphic rates set in the demography module and the local density-dependence (1/b) affect
the simulated abundances:

getLocalisedEquilPop( demog = demog,
DensDep_values = seq(50, 300, 50))

It simulates a time series of the population density (in individuals per hectare) of a single
closed population for varying values of 1/b (given by ‘DensDep_values’). This is achieved
by repeated matrix multiplication with the density-dependent transition matrix until an
equilibrium is reached. The function returns these equilibrium densities by stages at the
given density-dependence values and generates a bar graph (Fig.[2.3p). The generated
densities approximate the equilibrium densities of a closed patch in the RangeShiftR
simulation, and can thus be used to guide the choice of the parameter 1/b. However, the
matrix approach neglects stochasticity, the scheduling of survival and reproduction, and
the integer units of abundance, so that the quality of the estimate is lower for smaller

populations.

Dispersal The three phases of dispersal are first defined independently as sub-modules
before assembling them in the dispersal module. In the Emigration() sub-module, the
emigration probability is modelled as stage- and density-dependent, therefore we provide
a matrix with one row per stage containing three parameters each, which define how
emigration probability relates to population density:

emig <— Emigration( StageDep = T,
DensDep = T,
EmigProb = cbind(0:3, c¢(0.55,0.45,0,0),
c(5,5,0,0),
c(1,1,0,0) ))
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The transition phase uses SMS() as a method. It implements a step-wise process which is
defined by the directional persistence (‘DP’) and size of memory (‘MemSize’). Additionally,
we set a dispersal bias (second line) that describes the strength and decay of an additional
bias to move away from the original patch, as well as habitat-specific dispersal resistances
and a constant per-step mortality:

tran <— SMS( DP = 1.8,
MemSize = 4,
GoalType = 2,
GoalBias = 2.5,
AlphaDB = 0.4,
BetaDB = 10,
Costs = c¢c(3, 5, 1, 2, 30),
StepMort = 0.01)
The Settlement() sub-module defines the minimum and maximum number of steps
permitted and sets the mate-finding requirement:

sett <— Settlement( MinSteps = 15,
MaxSteps = 80,
MaxStepsYear = 20,
FindMate = T)

Now, the previously defined sub-modules can be combined in the Dispersal() module:

disp <— Dispersal( Emigration = emig,
Transfer = tran,
Settlement = sett)

Genetics The Genetics() module is optional and we leave it disabled here (but see
Bocedi et al. (2021) and the online tutorials for an example of this functionality). Although
this implies missing inter-individual variation in dispersal traits in our example, individuals
are still characterised by their sex, stage and age, which can affect some demographic and

dispersal attributes.

Initialisation The function Initialisation() uses mostly coded arguments to define
the spatial distribution and density of the initial population. The simulation in this
example is initialised in all locations indicated by the initial distribution map (provided
to the landscape module) at the density given in ‘IndsHaCell’. Further, the stage- and
age-distributions of the initial population are set.

init <— Initialise( InitType = 1,
SpType = 0,
InitDens = 2,
IndsHaCell = 75,
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PropStages = c(0, 0.6, 0.2, 0.2),
InitAge = 2)

Simulation The Simulation() runs for 200 years and over twenty replicates. The
population, range and SMS paths outputs are enabled and will be generated at the given
time intervals:

simul <— Simulation( Years = 200,
Replicates = 20,
OutIntPop = 5,
OutIntRange = 5)

Model run and results All defined model components are combined into the param-
eter master with RSsim(), which optionally takes a seed to pass to the random number
generator and make the simulation reproducible. Every RangeShiftR simulation is defined
by an instance of this class and the path to its directory and is run using RunRS():

s <— RSsim( land = land,
demog = demog,
dispersal = disp,
init = init,
simul = simul,
seed = 123456 )

dirpath <— "RS_example/"

RunRS(s, dirpath = dirpath)

The simulation output is written to text files in the ‘Outputs’ folder of the directory.
These can be further processed and visualised using the auxiliary output functions. For
example Fig.[2.3p shows a result that is returned by the function ColonisationStats(). 1t
calculates the time to colonisation and the occupancy probability at given years and can
map the values onto the landscape:

col <— ColonisationStats(s, dirpath, maps=T)

raster: :plot(col$map_col_time)

In the resulting plot, the non-suitable landscape matrix appears grey and all habitat
patches are coloured according to their averaged time to colonisation over all replicates.

In this example, smaller patches tend to get colonised later than larger ones.

2.5. Discussion

RangeShiftR 1.0 provides, for the first time, an open-source individual-based, eco-evolutionary

simulation platform in R, which includes a diversity of processes and offers various levels
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Figure 2.3.: RangeShiftR example. (a) Bar graph generated by the helper function get-
LocalisedEquilPop(), showing the localised equilibrium densities classified by
stages over the parameter 1/b (both in units of Inds/ha). They serve as a quick
approximation to assess the effect of density-dependent demographic rates.
(b) Raster generated by the output function ColonisationStats(), showing the
average time to colonisation.

of complexity, especially for the demographic and dispersal processes. It gives access to the
established RangeShifter platform (Bocedi et al.,|2014; Bocedi et al.,|2021), adds support-
ing functionality for model specification and analysis in R, and provides comprehensive
documentation to guide the user.

RangeShiftR complements the existing toolbox of R packages, as it offers some important
features that have not been available so far. Existing R implementations of spatially-explicit
population modelling frameworks, such as the recently published package steps (Visintin
et al., 2020) or the demoniche package (Nenzén et al., [2012), are population-based. In
contrast, RangeShiftR is individual-based and hence allows for an explicit representation
of genetics and evolutionary dynamics. The package vortexR (Pacioni & Mayer, |2017)
implements post-analysis functions for the prominent, spatially-implicit, Vortex model
(Lacy,|1993) that is also individual-based and commonly applied for population viability
analysis (PVA). Here, RangeShiftR provides a useful alternative that allows conducting
spatially-explicit PVA under more complex dispersal assumptions.

The RangeShifter GUI (Bocedi et al., [2014; Bocedi et al.,|2021) and the RangeShiftR

package constitute two complementary entities, as they represent alternative interfaces
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to the same software core. The GUI version offers an intuitive handling of the model
and visual tracking of simulation outcomes, making it particularly suited for the use by
stakeholders or for undergraduate education. The RangeShiftR package, on the other hand,
is especially useful for research purposes. It offers transparent, reproducible workflows, as
the entire simulation can be scripted in R, along with the visualisation and post-analysis
of simulation results. This also facilitates large-scale parameter comparisons, as required
in sensitivity and robustness analyses. The use of Rcpp (Eddelbuettel et al.,|2011) allows
running of the simulation in a C++ module and thereby yields high performance, while
the integration in R makes RangeShiftR available for multiple platforms and provides the
infrastructure for parallel and cluster computing without having to adapt the C++ back

end.

RangeShiftR holds many opportunities for interoperation with other R packages. Firstly,
it can be readily integrated with packages for describing the landscape context (e.g. raster;
Hijmans & Etten,[2016) or species distribution modelling (e.g. biomod2; Thuiller et al.,[2009|
sdm; Naimi & Aratjo, [2016)). Secondly, it permits coupling of different model types, as
exemplified by coupling RangeShifter with the land-use model CRAFTY (Murray-Rust et al.,
2014; Synes et al.,[2019). Thirdly, it enables integrated use with existing methodological
devices, like inverse parameterisation through Bayesian inference, for example using the

package BayesianTools (Hartig et al.,|2019).

RangeShiftR can help overcome some of the challenges that have prevented more
widespread use of mechanistic range models (Briscoe et al.,[2019) by offering high accessi-
bility. In the future, we plan to enhance the platform further to improve forecasts under
global change. For example, the model currently operates on a single habitat layer that con-
tains either land classes or habitat quality. Therefore, demographic rates are related to the
environment only indirectly via the user-defined carrying capacities or density-dependence
coefficients. Further, all density-dependent relationships have a predetermined shape that
is controlled by specified parameters but cannot be replaced by a user-specified function.
Moreover, RangeShiftR currently models only a single species and does not incorporate
species interactions. Lastly, the genetics module is currently restricted to modelling evo-
lution of dispersal traits while demographic traits cannot evolve. Thus, potential future
extensions of the platform will involve explicitly modelling demography-environment rela-
tionships (Pagel & Schurr,|2012) species interactions, and genetic evolution of demographic
traits. As the code is open source, there is now an opportunity for a broad community
of researchers and modellers to contribute to representing these important processes in

future versions of the platform.

The RangeShiftR package constitutes an important step towards making frameworks
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for modelling range dynamics under global change accessible to a wider audience (Schurr
et al.,|2012; Lurgi et al.,|2015; Zurell et al., 2016). We hope that this will inspire a more
widespread use of mechanistic distribution models, for example to guide conservation
efforts and ecosystem management, and facilitate more seamless integration with other

modelling tools.
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Chapter 3

Fitting an individual-based model
of spatial population dynamics to

long-term monitoring data

3.1. Abstract

Generating spatial predictions of species distribution is a central task for research and
policy. Among the currently most widely used tools for this purpose are correlative
species distribution models (cSDMs). Their basic assumption of a species distribution
in equilibrium with its environment, however, is rarely met in real data and prevents
dynamic projections. Process-based, dynamic SDMs (dSDMs) promise to overcome these
limitations as they explicitly represent transient dynamics and enhance spatio-temporal
transferability. Software tools for implementing dSDMs become increasingly available, yet
their parameterisation can be complex.

Here, we test the feasibility of calibrating and validating a dSDM using long-term
monitoring data of Swiss red kites (Milvus milvus). This population has shown strong
increases in abundance and a progressive range expansion over the last decades, indicating
a non-equilibrium situation. We construct an individual-based model with the RangeShiftR
modelling platform and calibrate it using Bayesian inference. This allows the integration
of heterogeneous data sources, such as parameter estimates from published literature and
observational data from monitoring schemes, and consistent quantification of parameter
uncertainties. Our monitoring data encompass counts of breeding pairs at 267 sites across
Switzerland over an annual time series of 22 years. We validate our model using a spatial-

block cross-validation scheme and assess predictive performance with a rank-correlation
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coefficient.

Our model showed very good and excellent predictive accuracy of spatial and temporal
projections, respectively, well representing the observed population dynamics over the last
two decades. Results suggest that reproductive success was the most decisive factor driving
the observed range expansion. According to our model, the Swiss red kite population fills
large parts of its current range but has potential for further density increases.

With our case study we demonstrate the practicality of data integration and validation
for dSDMs using available tools. This approach can improve predictive performance
compared to cSDMs. The workflow exemplified here can be adopted for any population
for which prior knowledge on demographic and dispersal parameters as well as spatio-
temporal observations of abundance or occupancy are available. The resulting calibrated
model provides refined insights into the ecology of a species and its predictions can inform

conservation and management.

3.2. Introduction

In response to multiple anthropogenic pressures and environmental shifts, the abundance
and distribution of many species are changing (Selwood et al.,|2015; Newbold et al.,[{2015;
Diaz et al.,[2019). Negatively affected populations can potentially be stabilised or even
recovered through targeted and effective conservation measures (Hoffmann et al.,[2010;
Bolam et al.,|2021; Duarte et al.,|2020). But also expanding populations may be in the
focus of conservation interest, for example when exploring scenarios of future threats
or evaluating the invasive potential of a species (Thompson et al.,[2021). The basis for
efficient conservation planning thus lies in reliable knowledge about the spatio-temporal
patterns of abundances and the expected effects of conservation measures (Guisan et al.,
2013} Zurell et al.,|2022).

Various approaches have been developed for spatially-explicit population modelling,
ranging from purely correlative to detailed mechanistic species distribution models (SDMs;
Dormann et al., 2012} Guisan et al.,|[2013). Currently, most spatial model assessments for
conservation planning are based on projections of correlative SDMs (cSDMs) (Franklin,
2013; Zurell et al., [2022), that statistically relate species occurrences to environmental
predictors (Elith & Leathwick, 2009). This class of models can achieve high flexibility and
may be readily fitted to available occurrence data, but their geographical and temporal
transferability is limited (Aradjo & Peterson,2012; Wenger & Olden,|2012). They further
provide only stationary or time-implicit predictions, which rely on the assumption that

the observed distribution is in equilibrium with its environment (Guisan & Thuiller, 2005).
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However, this assumption is commonly violated in conservation-relevant cases such as
invasive species, reintroduction programs, or threatened populations that are subjected
to ongoing environmental change. This leads to inaccurate predictions because the true
species distribution is actually transient and thus dependent on time and history (Santos
et al.,|2020; Watts et al.,2020; Semper-Pascual et al.,|2021).

This dynamic nature of spatial abundance patterns is recognized in dynamic spatially-
explicit process-based SDMs (hereafter called dSDMs). They understand present species
distributions and abundances as the result of the effects and interplay of a number of
eco-evolutionary processes (Urban et al.,[2016). dSDMs include an explicit description of at
least one of these processes to model spatio-temporal and potentially transient population
dynamics. Examples include representations of local population dynamics (Keith et al.,
2008; Barber-O’Malley et al.,|2022)) and limiting processes like dispersal (Risk et al.,|[2011;
Broms et al., |2016; Smolik et al., 2010), physiology (Rodriguez et al., [2019), or species
interactions (Schweiger et al.,[2012; Pellissier et al.,|2013). Further, dSDMs often include
stochastic elements to account for processes not explicitly described by the model. Thanks
to the integration of ecological theory, dSDMs are expected to provide more accurate
predictions under extrapolation and thus to be more readily transferable to non-analog
conditions than cSDMs (Gallien et al.,[2010).

The application of a dSDM requires its specification and validation (Schmolke et al.,
2010). Fully specifying a dSDM includes two main steps, both of which require distinct
types of knowledge about the population of interest (Singer et al.,[2018; Fig.[3.1). First, in
the model building step, the model structure and the functional description of the relevant
processes are established. They are usually chosen based on ecological theory and expert
opinion. Second, in the parameterisation step, the numeric values of all process rates,
such as demographic and dispersal rates, are determined by direct or inverse (indirect)
parameterisation or a combination of both. Direct parameterisation uses estimates of
process parameters based on data collected in the field or from experiments. Conversely,
inverse parameterisation is based on spatio-temporal observations of the modelled re-
sponse variables, typically abundance or occurrence. To make efficient use of all sources
of information and combine direct and inverse parameterisation, a Bayesian calibration
framework can be employed. In this, the direct parameterisation and its uncertainty are
expressed as prior distributions. The prior is updated via Bayes’ rule using a likelihood,
that measures how well a given set of parameter values is able to reproduce the observed
response data. This updated prior yields the posterior distribution. The procedure thus
identifies parameterisations that are consolidated with the data and can generate new

knowledge on the studied population, as prior estimates of process parameters are cor-
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rected and their uncertainty may be reduced. This approach further allows the consistent
propagation of uncertainty from the data sources through to model predictions (Hartig
et al.,[2012; Marion et al.,|[2012; Jaatinen et al.,[2021). The predictive performance of the
specified model is then assessed in the validation step. For this, the model is evaluated
on a set of testing data that, preferably, is independent of the training data. A way to
generate the training and testing data are cross-validation schemes that partition the full
data set in a prescribed way, e.g. in leave-p-out or k-fold cross-validations (Arlot & Celisse,
2010). The final, validated model can be used to generate projections to other times or

places and to compare alternative management scenarios (Bleyhl et al.,[2021).

To date, the widespread use of dSDMs for conservation applications has been hampered
by technical challenges with respect to their parameterisation and validation (Briscoe
et al.,|2019). With the proliferation of novel methods for the various model building steps,
software tools are being developed that assist their case-specific implementation. In R,
these are available as packages for building different types of complex dSDMs (Visintin
et al.,2020; Malchow et al.,|2021; Fordham et al.,[2021; Moulin et al.,[2021; Landguth et al.,
2017; Hagen et al.,|2021), for model calibration (Hartig et al.,|2019; Csilléry et al.,[2012), and
for cross-validation (Valavi et al.,[2019). However, their combined application in integrated

modelling workflows is still demanding and rarely undertaken.

In this study, we present a complete calibration and validation workflow for dSDMs,
utilising heterogeneous data for direct and indirect parameterisation. As a case study,
we modelled the Swiss population of red kite (Milvus milvus). This population has a
highly dynamic and volatile history that has seen accelerating increases in recent decades
(Aebischer & Scherler, 2021), rendering a dynamic modelling approach adequate. We
first built a dSDM with the individual-based modelling (IBM) platform RangeShiftR, that
explicitly simulates the processes of population dynamics and dispersal (Malchow et al.,
2021). Then, its process parameters were directly parameterised using published literature
data. This direct parameterisation was subsequently updated by integrating information
from long-term, structured survey data using Bayesian inference with BayesianTools
(Hartig et al., |2019). Finally, the predictive performance of the calibrated model was
evaluated by cross-validation on spatially-blocked data folds (D. R. Roberts et al.,[2017).
To test our workflow, we investigated whether the calibration could successfully inform
parameter estimates and which process parameters were most sensitive to the survey data.
Comparing the prior and posterior predictions of our model, we assessed if the calibration
considerably improved model fit and reduced uncertainty. Predictive performance of the
fitted model was evaluated in spatial-block cross-validation and compared to a comparable

cSDM. Lastly, the calibrated model was used to explore the potential population size and
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distribution of red kite in Switzerland.

The presented workflow (Fig.[3.) is intended to guide the application of complex dSDMs
to populations that exhibits variable dynamics and for which suitable data sources for
direct and inverse parameterisation are available. It is suited for linking process-based
models with monitoring data to obtain a solid quantitative basis for management decisions

while being explicit about involved uncertainties (Zylstra & Zipkin,|2021).
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Figure 3.1.: Calibration and validation workflow for process-based, dynamic species distri-
bution models. Different types of knowledge are needed to specify the model
structure and parameterisation. Their direct specification can be informed
from literature data, expert opinion, and ecological theory. In a calibration, the
direct knowledge on model parameters is combined with observations of the
model’s response quantity. In a Bayesian inference, for example, this is done
via the likelihood function. For cross-validation, the calibration is repeated for
different subsets of data, using the held-out data to measure predictive perfor-
mance. Various outcomes can be derived, both from the posterior distribution
directly and from model projections.
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3.3. Materials and Methods

3.3.1. Data

An overview of all data sources and their use in the modelling process is given in Table[B.2]
We utilised two sources of monitoring data of the red kite across Switzerland: the Swiss
breeding bird atlas that provides snapshot data from two periods (1993-1996, Schmid et al.
(1998); and 2013-2016, Knaus et al. (2018)) and the Swiss breeding bird survey (MHB, Schmid
et al.,[2004) that provides abundance time series for the years 1999-2019. Both schemes
are based on so-called simplified territory mapping of representative 1 km? squares across
Switzerland and record the number of observed breeding pairs during two to three repeat
surveys per year along a fixed survey route in each square (Schmid et al.,2004). The Atlas
survey data used here included 2318 sites, each of which is sampled in one year within each
five-year period. The MHB survey includes 267 sites (1 km? sampling quadrats) laid out
across Switzerland in a regular grid, which are sampled yearly since 1999. Further, we used
land cover and bioclimatic data as environmental predictors. Land cover was represented
with the CORINE Land Cover (European Union,|2022) classification (44 classes), obtained
for the years 2000, 2006, 2012, and 2018 at a spatial resolution of 100 m. Climate was
represented by the nineteen WorldClim bioclimatic variables. We used averaged annual
values from the time period 1979-2013 with a spatial resolution of 30 arcsec (= 1 km)
obtained from CHELSA Bioclim v1.2 (Karger et al., 2017} Karger et al.,[2018b).

3.3.2. Modelling

Our dSDM comprised two components, that are detailed in the following section: (1) a
static habitat model that describes the habitat suitability in each year over the study region,
and (2) a mechanistic individual-based model (IBM; Railsback & V. Grimm, [2019)) that
describes the population and range dynamics. IBMs use a bottom-up approach in which
key processes are formulated at the individual level and are scaled up to the population
level by numerical simulation (DeAngelis & Mooij,|2005). All analyses were conducted

using the statistical programming language R (R Core Team, [2023).

Habitat suitability of the Swiss landscape

Habitat suitability was derived from a cSDM based on presence-absence data generated
from the second atlas (2013-°16) data set. Because the red kite has been expanding its range
in Switzerland during the past 30 years, this most recent data best reflects the underlying
habitat requirements. For the cSDM, we assumed that most suitable habitats are already

occupied even though they may not have reached their potential capacities yet. The red
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kite is a generalist and opportunistic raptor that breeds in a wide range of climates and
habitats. Typical nesting habitat consists of forest patches with suitable roosting sites and
open areas like grassland or agricultural fields that provide prey, which mostly consists of
small mammals. Food sources like open waste dumps and carrion are readily exploited if
present. To represent the availability of resources relevant for the occurrence of red kites,
we used the CORINE 2012 land cover data and aggregated its 44 classes to seven land
cover types (Table[B.1). To represent climatic influences, all nineteen Bioclim variables
were included (TableB.3). Since the red kite requires different habitats for nesting and
foraging, it is a highly mobile species and occupies breeding home range sizes of about 4
to 5 km? for males (Baucks, 2018; Nachtigall,|2008). To allow the cSDM to consider the
diversity of habitat types, we used a grid cell size of 4 km2. Since the IBM was based on
the same grid, this also constitutes a trade-off between the abilities to resolve both the
effects of density-dependence on the one hand and dispersal displacements on the other
hand. The high-resolution land cover data was aggregated to the target resolution of 2 km
by calculating the proportional land cover in each cell. The bioclimatic data was coarsened

to the 2 km-resolution by bi-linear interpolation between the grid cells.

To fit the cSDM habitat model, we first selected predictors from all land-cover and
bioclimatic variables based on their univariate importance (assessed by the AIC of linear
models with second-order polynomials) under the constraint that pairwise Spearman
correlation must not exceed 0.7 (Dormann et al.,[2013). The variables selected are labelled
with an asterisk in Tables[B.1and We then created an ensemble cSDM by taking the
mean occurrence probability predicted by four different algorithms: binomial linear model
with second-order polynomials and step-wise variable selection; binomial additive model
with splines; random forest; and boosted regression trees. The predicted probabilities are
subsequently interpreted as a habitat suitability index (HSI). The ensemble cSDM was
then projected to Switzerland and a 12 km buffer around its border in the years 2000, 2006,
2012, and 2018, with varying land-cover data and constant bioclimatic variables. Climate
was kept constant because it was considered only a minor driver of change in resource
availability over the study period. The buffer was applied to reduce potential boundary
effects in the IBM simulations. It was large enough to capture most dispersal events in
the Swiss population. For all other years in the period of 1999-2019, the HSI values were
linearly interpolated. To distinguish between habitat and non-habitat cells, we derived a
binarisation threshold (ﬁﬁ =0.51) as the value yielding equal sensitivity and specificity (=

90%) and considered all cells with lower HSI values non-habitat.
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Figure 3.2.: Life-cycle graph of the stage-structured population model for the red kite with
three developmental stages. The probability for an individual in stage s to stay
in its stage over one time step (1 year) is denoted by 7, ;, and to move to the
next stage is denoted 7, ;1. Only stage 3 produces offspring, with a fecundity

of ¢.

Table 3.1.: Process parameters of the IBM that were included in the Bayesian calibration
and the parameters of their truncated normal prior distributions.

Parameter name Lower bound | Mean SD Upper bound
Density-dependence b~} 0.001 0.006 0.0025 0.020
Fecundity ¢, 0.5 1.66 0.51 5.0
Survival prob. oy 0.01 0.42 0.08 0.99
Survival prob. o, 0.01 0.68 0.09 0.99
Survival prob. o3 0.01 0.80 0.05 0.99
Development prob. y;_, 0.01 0.80 0.10 0.99
Development prob. y,_,3 0.01 0.55 0.10 0.99
Emigration prob. ¢; 0.01 0.80 0.10 0.99
Settlement inflection pt. f —15.0 4.0 4.0 15.0
Dispersion parameter v 1.0 50.0 250.0 500.0
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Individual-based model

We used the R-package RangeShiftR (Malchow et al., |2021), that interfaces to the
individual-based modelling platform RangeShifter 2.0 (Bocedi et al.,[2021), to construct a
dSDM based on the gridded habitat suitability maps described above. In the following,
we describe the main steps of the direct parameterisation, and refer to the full ODD
(Overview, Design concepts and Details) protocol (V. Grimm et al.,[2020) in Appendix|D|for
all details. RangeShiftR explicitly simulates demography and dispersal in discrete unit-
time steps, which here describe one year. During each year, the processes "reproduction”,
“juvenile dispersal”, “survival”, "development”, and “aging” are evaluated in this order for
all individuals. The prior distributions on the respective process parameters (Table [3.1)
were informed by literature data and expert knowledge. They were then updated with

information contained in the survey data via Bayesian inference as described below.

Our model is female-based, since females primarily determine the population dynamics
in red kite. Their development is described in three stages (Fig.[3.2), with classifications
and age ranges adopted from Sergio et al. (2021) and Newton et al. (1989): Dispersing
juveniles are one to two years old, sub-adults establish a territory within their second to
sixth year, and breeding adults can be as young as three but maximally twelve years of
age. A senescent stage was not included in the model because it does not contribute to
the overall fecundity and non-breeding adults are not monitored in the survey. The age
limits are not strict, as the stage transitions are modelled probabilistically (Fig.[3.2). The
transition probabilities 7, , are expressed as survival probabilities of stage s, oy = 7, s+ 75 41,
and the development probabilities y; = 7,11 o5 L. Both can independently vary between
zero and one. The development probabilities are assumed as y; = 0.80 £ 0.10 for stage 1
and y, = 0.55 + 0.10 for stage 2, to approximately yield the given age classes (Fig. B.1).
The survival probabilities o are taken from Katzenberger et al. (2019) for all three stages:
01 = 0.42+0.08 and 0y = 0.68 £0.09 and o3 = 0.80 + 0.05, which is also in accordance with
Schaub (2012) and Newton et al. (1989).

Fecundity ¢ was assumed to be density-dependent and was modelled as an exponential
decay with population density. Each cell i is characterised by a local strength of demo-
graphic density-dependence b;, which is obtained as the global strength b divided by the
cell habitat suitability HSI;, b = b HSI; %, given in units of cell area (a, = 4 km?). Fecundity
follows the relation ¢;(n;) = ¢ e %", where n; denotes the density of adults in stages 2 and
3in cell i (i.e. juveniles do not count towards this density-dependence). The base value ¢,
is the required process parameter and denotes the theoretical fecundity at zero population
density. Nageli et al. (2021) report a realised fecundity of 1.77 £+ 0.70, which agrees with
Schaub (2012) and Nachtigall (2008). We assumed that this value is reached at a density of
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25 breeding pairs (BP) per 100 km? (i.e. 1 BP per cell) and halved it for our female-only
model: ¢; = ¢(n = 1/a,) = 0.88 £ 0.35. We can then get ¢, from ¢y(b) = ¢, eb/NS! with b as
a calibration parameter that controls the degree of density-dependent decay in fecundity.
The HSI over all habitat cells had a mean and standard deviation of 80% + 12% and we
assumed that the lower and higher fecundities were attained in the lower and higher
quality habitats. This was given with a range of b = (0.50 £ 0.15) a. (Fig.[B.2), yielding
¢o = 1.65 £ 0.51.

Dispersal is explicitly modelled in three stages: emigration, transfer and settlement
(J. M. J. Travis et al.,|2012). Red kites are strongly philopatric (Newton et al.,{1989) so that
emigration was modelled as occurring in the first stage only. The emigration probability
was assumed constant at e; = 0.64 + 0.10, meaning that an expected proportion of 87% of
juveniles have dispersed within their first two years. This value best matched observations
in which 42% of females of a cohort have emigrated after year one and 45% after year two
(own unpublished data), suggesting a larger proportion of emigrants among two-year-old
juveniles than one-year-old juveniles. The transfer phase described the movement of a
dispersing individual through the landscape. It was modelled as a strongly correlated
random walk in a random direction with a step length equal to the cell size. After each step,
the option to end the movement and settle was evaluated. Settlement was only possible
in habitat cells and its probability was density-dependent with a sigmoid relationship
(Fig. . Its inflection point f; was a calibrated parameter and was estimated as [?s =
Bi/b = (4 £ 4)a;!. The maximum settlement probability and the slope parameter were
both fixed parameters and were assumed as &, = —1 and sy = 0.75, respectively. The
maximum number of steps in the random walk was set to 10. Therefore, depending on the
availability of sparsely populated habitat, individuals exhibit dispersal distances between 2
and maximal 20 kilometres, which is consistent with observations (own unpublished data;
Newton et al.,1989; Nachtigall,[2008). Longer-range dispersal events are also frequently
observed, but excluded from the model due to the small study region and the mountainous

terrain. In- or outflux of individuals across the system boundaries was not considered.

The initial conditions of each simulation were stochastic. The number of adult individuals
in each cell was drawn from a Poisson distribution whose mean values were predicted
from a generalised linear model. This model of the initial red kite distribution was an
autoregressive distribution model (Dormann et al.,[2007) of the earlier atlas data (1993-'96)
with the spatially interpolated values of atlas counts as its sole predictor (Fig.[B.4). The
number of juveniles and sub-adults was subsequently estimated from the demographic

rates under the assumption of a stable stage distribution.

38



3.3. MATERIALS AND METHODS

3.3.3. Bayesian calibration

In a Bayesian calibration, a joint posterior distribution was estimated for nine model
parameters 6 based on their prior distributions p(6) and the likelihood I(8) (Fig.[3.1). The
priors express the a-priori information that we assumed about likely parameter values
as summarised in Table[3.1] The likelihood function [(f) measures the fit of a model M,
parameterised with 6, to the monitoring data. The calibrated model parameters are: the
strength of density-dependence 1/b; six demographic probabilities for survival of all stages
(01, 09, 03), juvenile and sub-adult development (y;, y5), and the base adult fecundity (¢); as
well as two dispersal parameters to control the emigration (e;) and settlement probabilities

(Bs). Additionally, a dispersion parameter v is calibrated, which is introduced below.

All priors p(8) were chosen as truncated normal distributions. Their means and standard
deviations were informed from the literature and expert opinion and they were bounded to
their respective valid parameter ranges (Table[3.1). As calibration data, we used observed
abundances from the MHB survey, Dy,;5- Based on this data, we defined a likelihood
1(0) = p(Dppg |0, M) as follows: For a given parameter vector 6, the RangeShiftR simulation
model (M) is run and the output abundance data are aggregated and averaged over twenty
replicate runs of the model. The result D, is compared with the MHB data under the
assumption of a negative-binomial error distribution (NB), so that for an observation at
site i and time t, 1;;(0) = Pryg(Dmus,it | #=Dsim,it »v)- The parameter v describes the error
over-dispersion and was also calibrated. It arises in an alternative formulation of the
negative-binomial probability mass function Pryg formulated in terms of its mean y and
dispersion v, instead of the success probability r = v/u+vand the target number of successes
n = v. Therefore, its variance is given by o2 = y + #*/v. It approaches p from above when
v — oo, as the negative binomial converges to the Poisson distribution. The variance can
thus be tuned by v, rendering it an appropriate error description for over-dispersed count
data.

Due to the stochasticity inherent in our simulation model, the likelihood values calcu-
lated from repeat simulations were also stochastic. They thus represent an estimator of
the exact likelihood. Conceptually, this not a problem for the applied Markov chain Monte
Carlo approach (MCMC, details below), since the pseudo-marginal theorem guarantees
that the MCMC sample still converges to the exact posterior distribution (Andrieu & G. O.
Roberts,[2009; Warne et al.,[2020). Practically, however, large variances in the likelihood
estimator can increase the convergence time dramatically if the sampler gets stuck at
occasional high likelihood values. To reduce the variance in the likelihood estimates, we

aggregated the abundance data within spatio-temporal blocks of 14 x14 grid cells in space
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and three years in time (Figs.[B.5|and [B.6). These aggregation factors were chosen with
the target of reaching a variance below ten on the logarithmic scale in repeated likelihood
evaluations for a given . The aggregation resulted in 57 spatial and 5 temporal blocks,
within which the observed and simulated red kite densities were compared. Under the
usual independence assumptions, the total likelihood was then expressed as the product
over all blocks: 1(0) = [T/, TTr-y Li¢ (6).

To validate the calibration setup and assess the sensitivity of the likelihood estimates 1(0)
to changes in the model parameters 6, we performed a local sensitivity analysis (Fig. [B.7).
For this, a test data set Dgp was simulated from the model with all parameters at their
mean prior values. Then, one parameter at a time was varied within the boundaries of
its prior distribution while keeping all other parameters at their mean and estimating the
likelihood with respect to Dgu. Further, we performed a global sensitivity analysis with
Morris’ elementary effects screening method (M. D. Morris, [1991).

To estimate the joint posterior distribution based on the defined p(6) and [(0), we
used a MCMC sampling scheme (Luengo et al., [2020). Therein, the posterior density
(0] Dpyg, M) of a series of given parameter sets @ is evaluated according to Bayes’ rule.
The utilised MCMC algorithm was a variant of the adaptive Metropolis sampler, namely
the differential evolution sampler with snooker update (DEzs, Braak & Vrugt,|2008), as
implemented in the BayesianTools R-package (Hartig et al.,[2019). Every calibration run
included three independent DEzs-MCMCs with a length of 2 x 10 iterations, of which
the first 5 x 10* were discarded as an initial burn-in period. Each DEzs, in turn, consisted
of three inter-dependent internal chains, so that each calibration comprised a total of
nine chains. The chains were checked for convergence using trace plots, trace rank plots
(Vehtari et al.,2021) and the multivariate potential scale reduction factor (psrf; Gelman &
Rubin (1992)). A chain was considered approximately converged if its multivariate psrf
value had dropped below 1.10.

To assess the information gained in the calibration, the sampled posterior distributions
were contrasted with the prior distribution. To this end, the parameter estimates were com-
pared with respect to the medians and quantiles of their respective marginal distributions.
To evaluate if and by how much the uncertainty was reduced, we assessed and compared
the distribution breadth by calculating the width of the highest-posterior-density intervals
(HPDIs).

3.3.4. Cross-validation and prediction

We employed a spatial block cross-validation scheme to evaluate the model fit without

duplicate use of data for both model calibration and validation (D. R. Roberts et al., 2017).
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To this end, the data was split into five spatially contiguous folds (Fig.[3.1/and Fig.[B.5).
For each fold, the respective subset of MHB data was held out and the model was fit to
the remainder of the data. To ensure that the folds covered largely identical spaces of
environmental conditions, we chose longitudinally structured folds that include a similar
altitudinal profile. For model validation, the respective calibration results for each fold
were used. For final model projections, in turn, a separate calibration on the full data set

was used.

Posterior model predictions were generated by taking a sample of 1000 draws from the
joint posterior, running the dSDM with each drawn parameter vector, and calculating
the mean, median and 95%-credibility interval (Cl) of the simulated abundances. Prior
predictions were obtained in the same way but using draws from the prior distribution.
Both prior and posterior predictions were run for the time covered by the MHB data and
additional 30 years forward with constant habitat suitabilities, i.e. no changes in land
cover or climate were considered. This projection provides an estimate of the potential

current population size and distribution, without making a prediction to future conditions.

To assess the model’s predictive performance, we calculated Harrell’s c-index (Newson,
2006, using the function rcorr.cens from the Hmisc R-package), a rank correlation index that
generalises the AUC index to non-binary response variables. It quantifies the probability
that for a given pair of data points the ranking of predictions matches the ranking of
observations. This measure was used in Briscoe et al. (2021) as a form of temporal AUC to
assess the fit to temporal trends. We use it here as an index that is applicable to abundance

predictions and can be interpreted like the AUC for occurrence predictions.

3.4. Results

3.4.1. Sensitivity analysis

Based on the local and global sensitivity analyses (Fig.[B.7]and Fig.[B.8), we found that
the likelihood estimates responded most strongly to variation in the strength of density-
dependence 1/b, the adult base fecundity ¢, and the three survival probabilities oy, oy,
and o3. Therefore, we expected that these parameters will calibrate best under our setup,
while the development probabilities y;, y2, and the emigration probability e; would be only
weakly informed by our survey data through the specified likelihood.
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Figure 3.3.: Box plots summarise the marginal prior (yellow) and posterior (blue) distri-
bution for each calibration parameter and for all five spatial folds. The black
bar marks the median, the boxes show the inter-quartile range, the whiskers
extend to the most extreme data point which is no further away from the box
than 1.5 times its length.
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3.4.2. Model calibration

To calibrate the model parameters, we ran independent DEzs-MCMC chains on different
training data sets: five chains were run on the separate folds of the cross validation and
one on the full data set. Differences between the respective sampled posterior distributions
can therefore arise both because of differing convergence and because of the data selection.
We find that all posteriors converged roughly in the same area of the parameter space, as
the variance over the five folds was small. Their marginal distributions take on similar

medians and quantiles.

A comparison between the prior and posterior distributions revealed how the considera-
tion of the MHB survey data informs the initial parameter estimates that were obtained
directly from literature data. Notably, the medians of the marginal distributions for fe-
cundity ¢y and the survival probabilities of the first and second stage, o and oy, have
shifted significantly, whereas those of the other parameters remained largely unchanged.
The marginal posterior distributions for each parameter and each spatial fold are rep-
resented by box plots in Fig. and those for the calibration to the full data set are
shown in Fig. Comparing the HPDIs of the prior and posterior distributions, we
found substantially narrower posteriors and thus reduced uncertainty for the strength
of density dependence 1/b, fecundity ¢, and the survival probabilities of stages one and
two, o1 and oy. These parameters had already responded strongly in the sensitivity analy-
sis. No uncertainty reduction nor a significant change in point estimate were found for
adult survival o3 (Fig.[B.13). This was contrary to our expectation based on the sensitivity
analysis, but this parameter already had the most informative priors to begin with. The
dispersion parameter of the negative binomial error model was calibrated to a very large
value, yielding a variance that was close to that of a Poisson distribution. Thus, only slight

over-dispersion was detected relative to a Poisson-distributed error.

The convergence of all DEzs-MCMCs was regarded sufficient, based on the conducted
diagnostics. However, there were considerable differences between the folds due to the
varying number of MHB sites included: The chains reached multivariate psrf values of 1.05,
1.02, 1.05, 1.09, and 1.04, respectively, for folds 1to 5. Convergence was further assessed

using trace plots (Fig.[B.9), trace rank plots (Fig.[B.10) and psrf plots (Fig.[B.11), which

were all satisfactory. No substantial correlations between the parameters were detected

(Fig. [B.14).
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Table 3.2.: Evaluation of the spatially-blocked cross-validation (CV). Each fold was used as
test data for a separate calibration, which used the remaining folds as training
data. Predictions to the test data were evaluated using the c-index, given per
row by its mean and standard deviation in brackets. The c-index was computed
on different subsets of the MHB data, given per column: The spatio-temporal
c-index compares each observation (site-year) independently, the temporal c-
index compares time series of total abundance per fold, and the last column
gives the c-index over the sites with the 15% highest variance.

Spatial CV fold Spatio-temporal ~ Temporal  High variance

Fold 1 0.69 (0.05) 094 (0.05) 0.67 (0.11)
Fold 2 086 (0.02) 093 (0.05) 0.59 (0.06)
Fold 3 0.89 (0.02)  0.94 (0.04) 0.65 (0.07)
Fold 4 092 (0.01) 092 (0.05) 0.75 (0.05)
Fold 5 0.85 (0.04) 092 (0.06) 0.73 (0.07)
All folds 0.88 (0.01) 094 (0.04) 0.66 (0.03)

3.4.3. Model validation

The spatial-block cross-validation was evaluated by calculating the c-index per spatial
fold and for different subsets of the MHB data (Table[3.2). First, it was calculated over all
observations, i.e. all site-year combinations within a fold, independently. The overall value
of 0.88 indicates an excellent fit to the validation data. However, the results were quite
variable across folds (see also Fig.[B.15), which is likely due to the differing number and
information content of the included MHB sites. Second, focusing on regional abundance
dynamics, we calculated the c-index for the time series of the total abundance within each
fold, consistently yielding excellent values between 0.92 and 0.94 (see also Fig.[B.16). This
confirms that averaging the abundance over large regions further increases the accuracy of
temporal predictions. Third, we were interested in the performance of our dSDMs at those
MHB sites that showed the highest variance in red kite counts, since highly fluctuating
population sizes are often of special conservation interest but are usually harder to predict.
To this end, we ranked all MHB sites by their count variance and computed the c-index
over the top 15% most variable sites. The folds scored significantly lower, showing an
overall value of 0.66 (see also Fig.[B.17), which signifies a substantial drop in performance
and indicates fair predictions for highly variable sites. Again, the different folds show very

variable results that range from 0.59 to 0.75, depending on the specific sites they include.
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Figure 3.4.: Prior (top) and posterior (bottom) simulations of the abundance time series
of red kite in Switzerland. The blue line and band show the median and 95%-
credibility interval of total number of predicted breeding pairs (#BP), with
relative values (with respect to year 1999) on the left and absolute values
on the right y-axis. The bottom panel shows the cross-validated posterior
predictions together with the breeding bird index (red circles, relative y-axis
only) for comparison. The dashed vertical lines mark the years for which spatial
predictions are depicted in Fig.[3.5] After the last year of survey data, 2019, the
environmental conditions are kept constant.
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Figure 3.5.: Mean posterior predicted population densities for the years 1999 and 2019, and
after 20 further years under constant conditions (left column) as well as the
differences between those years (right column).

3.4.4. Model projections

The model was used to generate projections to places not covered by the MHB survey
by simulating red kite abundance over the whole extent of Switzerland. This allows to
compare these projections to the Swiss breeding bird index, which estimates the total
population trend relative to the year 1999 (Knaus et al.,[2022) and thus offers an additional
source of validation data. Further, by running the model forward beyond the MHB data
period and under stable environmental conditions, we estimated the size and range of the
current potential population.

Prior and posterior predictions of total red kite abundance during the entire survey
period and thirty years onward, assuming constant habitat suitabilities, are shown in
Fig. The posterior predictions show very good fit to the Swiss breeding bird index.
Comparing the prior and posterior predictions of our model gives more evidence that the

calibration was able to gain substantial information from the survey data: the model fit
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was improved considerably and output uncertainty was reduced. Simulations from the
prior show negative population trends in most cases, and they have a large 95%-Cl that
includes predictions of 5 to 2100 breeding pairs in year 2019. The posterior predictions,
in contrast, show increasing trends throughout, and a much narrower Cl. They exhibit a
comparably steep increase in abundance over the past twenty years, in accordance with
the strong increases in red kite abundance that were recorded during this time. Forward
simulation shows that today’s potential equilibrium population size amounts to 6400
(95%-Cl: 5300-7700) breeding pairs.

Spatial projections were made to the whole country as three snapshots in time (Fig. [3.5):
at the beginning (1999) and end (2019) of the survey data set, as well as after a continuation
of further twenty years (2019+20). These projections mirror the rapid range expansion of
red kite range that Switzerland has seen in the past two decades. However, the continuation
shows a relatively stable range with increasing population densities, suggesting that the
current population has not yet reached the carrying capacity in all colonised areas. The
same maps were created from prior predictions for comparison (Fig.[B.19). They exhibit a
contracting range over time, that deviates substantially from the posterior maps, again

indicating the effective inclusion of information from the MHB data.

This comparison of prior and posterior distributions and their respective predictions
can shed light on the main drivers of the presented results. While the prior predictions
exhibit a tendency towards decreasing populations and contracting ranges, the posterior
predictions reproduce the observed patterns closely. Comparing the marginal distributions
(Fig.[3.3), the main drivers of these disparate predictions appear to be fecundity and early
survival rates. They responded most strongly to the information incorporated from the
MHB data via the Bayesian calibration. Taken together, these three influential parameters
suggest that reproductive success was determined to play a key role in driving the resulting
increases in local density and distribution. In contrast, changes in habitat suitability over
the study period seem to have had a lesser effect on the resulting population. This was
assessed in a simple analysis of the sensitivity of simulated abundance to habitat suitability.
We compared the abundance time series from Fig.[3.4 with two counter-factual scenarios
in which the habitat suitabilities of each year were raised or reduced by five (out of 100)
points (Fig.[B.18). By the last year of MHB data, 2019, this intervention had an effect of
9-10% on total abundance, which is small compared to the effect of the calibration (Fig.[3.4).
We thus conclude that the population increases are not driven by a changing environment,

but by transient dynamics to an equilibrium with much higher population size.
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3.5. Discussion

Reliable methodology for understanding and predicting a species’ population and range dy-
namics will be crucial to inform decision making in the future. Dynamic, spatially-explicit,
process-based distribution models (dSDMs) provide valuable advances towards improved
biodiversity forecasts (Urban et al.,[2016) but are currently underused due to technical
and data challenges and limited guidance for applications (Briscoe et al.,|[2019; Zurell
et al.,|2022). This study contributes to overcoming these challenges. We demonstrated
the practicability of a complete modelling workflow for dSDMs with a case study of a
conservation-relevant population, the red kite in Switzerland. This included calibrating a
complex stochastic simulation model to heterogeneous empirical data, interpreting the re-
sults, and validating the model by cross-validation. Thanks to the use of Bayesian inference,
we can integrate direct and indirect knowledge on the process parameters, account for
their uncertainty and propagate it to model predictions. Our model captures the Swiss red
kite population trends with higher spatial and temporal predictive accuracy than achieved
with correlative models in a previous study (details below, Briscoe et al.,2021). The model
suggests that the potential population size under current environmental conditions is
much larger than presently realised and that this is may be a result of the population’s
history. The workflow exemplified here can be readily adapted to other species, if an
adequate model, prior parameter estimates, as well as response data (e.g. occupancy or
abundance data) are available, and it promises to yield improved parameter estimates and

more accurate, validated model projections.

The process-based dSDM used here to demonstrate our workflow was built with the
individual-based modeling platform RangeShiftR (Malchow et al., [2021). It explicitly
considers relevant ecological processes such as demography and dispersal and includes
crucial mechanisms such as density-dependence. Therefore, transient dynamics, that arise
when a distribution is not in equilibrium with its environment, can be reproduced and
dynamic responses to change can be represented. The IBM structure was determined
based on expert opinion and the direct (prior) parametrisations of the process parameters
were derived from literature data. IBM approaches are particularly suited for the direct
estimation of their model parameters (e.g. survival probability or dispersal distance)
because they formulate all processes from the perspective of the individual (Railsback &
V. Grimm,|2019), where they can be estimated from data obtained in observational studies
(e.g. mark-recapture). The prior estimates were updated using the MHB abundance data
within a Bayesian inference. Here, IBMs have the advantage of realistically modelling

small local populations of a few individuals by incorporating demographic stochasticity, so

48



3.5. DiscussioN

that the survey data can be used at a high spatial resolution. Depending on the research
question and the available data, however, a different model formulation may be more
adequate, such as spatially-explicit population-based models (implemented for example
in steps Visintin et al. (2020)). For a successful parameterisation using the presented
framework, certain data requirements should be met: the utilised model should have
model parameters whose priors can be informed by ecological theory and direct estimates
and it should generate outputs that can be compared to observational data via a plausible

error model that can be expressed as a likelihood function.

The successful calibration of parameters in process-based dSDMs can produce new
insights, since they have a well-defined ecological meaning. Comparing the prior and
posterior distributions of our model, we found that some parameters in particular, e.g. the
adult fecundity ¢y, its density-dependence 1/b, and the survival probabilities of juveniles
and sub-adults, o1 and oy, responded strongly to the inclusion of additional information
from survey data. This behaviour was predicted well from the local and global sensitivity
analyses. The detected sensitivity further indicates that the model projections are respon-
sive to these parameters, thereby suggesting potential pathways for conservation measures,
e.g. highlighting the protection of young individuals and supporting nest success. Pfeiffer
& Schaub (2023) reached the same conclusion and ”identified productivity, i.e. the number
of fledglings per breeding pair, as the main demographic driver, followed by adult survival”
when modelling the German red kite population with an integrated population model.
Further, their estimates of stage-wise survival probabilities are in strong agreement with
ours. The prior estimate of 1/b was corroborated and those of ¢y, o7 and o, were corrected
to higher values, while the uncertainty around all four estimates was reduced. These
corrections in parameter distributions also drive the better fit of the calibrated model
projections to the data as well as the reduced output uncertainty. Interestingly, it was
shown that the calibration could gain information even on the early developmental stages
(1 and 2) that were not recorded in the calibration data, which held abundances of stage
3 only. This is facilitated by the ecological assumptions that are imposed by the model
structure which discerns the stages by their ability to disperse (only stage 1) or reproduce
(only stage 3).

The discrepancies found between prior and posterior parameter estimates are driven by
different factors (Cailleret et al.,|2020): Firstly, there can be a true difference, for example,
if the prior estimates were obtained from different study populations. In our case, the
prior fecundity was based on a measurement from a Swiss sub-population with a high
breeding density, which may have a lower fecundity than the Swiss average. The prior

survival probabilities are taken from a German red kite population, that shows a slightly
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negative population trend, and the upward correction seems to better match the increasing
Swiss population. Red kite in Switzerland benefit from public feeding (Cereghetti et al.,
2019) and many sub-adult individuals change from migratory to resident behaviour, which
can also increase survival. Secondly, an important source of deviations between empirical
and calibrated parameter estimates is model error. Our IBM captured only a subset of
the multiple eco-evolutionary processes that underlie the observed abundance patterns.
Therefore, the calibrated parameters will account for missing processes to some extent.
This highlights the need for further development of dSDMs to include more mechanisms
and thus to fit observed data more closely. It further emphasises the importance of
effective integration of direct and inverse calibration to estimate parameter values and
their uncertainties, since predictions and derived management decisions can be highly

sensitive to the final parameterisation.

The validation of model predictions to assess model performance is common practice
in the application of cSDMs (Sillero et al.,[2021), but is often missing with dSDMs. With
the presented workflow, we have successfully applied spatial-block cross-validation to a
dSDMs by calibrating the model to each of five spatially contiguous regions within the
study area. By spatially blocking the hold-out data we reduced the amount of spatial
autocorrelation between the training and testing data, which is often present in abundance
data and only insufficiently reduced by other cross-validation schemes such as randomised
leave-p-out. This yields a more realistic assessment of predictive performance for inter-
polation. For other types of data, different blocking techniques may be more adequate
(D. R. Roberts et al.,[2017). The folds were selected carefully in a way that the same range
of environmental conditions is represented in each one, so that model evaluation does
not involve extrapolation to new environmental conditions. Performing a cross-validation
is usually computationally expensive, as the calibration needs to be repeated for each
set of hold-out data. Therefore, a suited validation method has to be chosen carefully.
Alternatives include approximation to leave-one-out validation by WAIC (Vehtari et al.,
2017).

The full red kite dSSDM was evaluated based on its cross-validated abundance predictions
using Harrell’s c-index as a measure of predictive performance, which indicated excellent
predictive accuracy (c-index: 0.88). In sites with highly fluctuating abundances perfor-
mance dropped considerably, and only provided fair predictions (c-index: 0.66). A similar
analysis was conducted by Briscoe et al. (2021) who compared the accuracy of correlative
SDMs and dynamic occupancy models (Kéry et al.,2013) that were fitted to the MHB data
of 69 Swiss birds, including the red kite. They found that predictive ability of occupancy

was high for all examined model types when assessed across all sites (mean AUC > 0.8)
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but much lower when specifically testing only sites that showed occupancy change (mean
AUC 0.64-0.71). The AUC metric is based on predictions of occupancy only and therefore
generally scores above the c-index, which ranks abundances. Collapsing our abundance
predictions to occupancy and comparing them to Briscoe et al. (2021) in terms of the AUC,
our calibrated IBM surpasses the mean of their red kite SDMs, both across all sites (mean
AUC of 0.91 versus 0.85) and occupancy-switching sites only (0.80 versus 0.67). Especially
in range shifting populations, such as the red kite in Switzerland, process-explicit dSDMs
can outperform correlative approaches because they make no equilibrium assumption.
Our model also showed clear advantages over the dynamic occupancy models in Briscoe
et al. (2021), likely due to the explicit consideration of spatially-explicit processes such as

density-dependence in population dynamics and dispersal.

The calibrated model was run forward under current environmental conditions in order
to explore the potential population size and distribution. In the same way, it could be
used to assess population trends under certain scenarios such as conservation measures
involving habitat improvements or regulation of demographic rates. For predictions of
future population dynamics, however, expected changes in land use and climate have to
be taken into account. In our dSDM, these variables are only considered through the
one-dimensional habitat suitability and thus can not impact demographic processes di-
rectly and independently, as ecological theory suggests. More complexity and mechanistic
understanding could be incorporated by substituting the habitat model with direct rela-
tionships of species traits like demographic rates with environmental variables. Such a
demographic range model is adequate for predictions under climate change (Schurr et al.,
2012; Malchow et al.,[2023). As a further limitation, the habitat map that underlies our
model consists of a cSDM fitted to recent Atlas data. It is possible that suitable but not yet
occupied parts of the red kite niche were missed in this data and therefore the future range
would be underestimated by the predictions. This limitation can be circumvented by using
a habitat model that does not rely on the equilibrium assumption, e.g. a rule-based model
derived from knowledge about the species’ habitat requirements or a eco-physiological
SDM (Kearney & Porter,[2009). Moreover, the observed increases in range and density may
in part be fueled by individuals that were not recruited in the study region but immigrated
from surrounding high-density populations that were not considered in the model. More
potential for model improvement lies in implementing additional processes such as mating
systems, species interactions, or genetic and behavioural adaptation. Their successful

parameterisation, however, will require adequate data.

The inverse calibration of dSDMs from observational data is also possible with other

methods like pattern-oriented modelling (POM; V. Grimm et al.,[2005; Mortensen et al.,
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2021) or approximate Bayesian computation (ABC; Beaumont, [2010; Hauenstein et al.,
2019), the latter of which has already been demonstrated in the RangeShifter model
(Dominguez Almela et al.,[2020). Independent of the chosen calibration method will the
accurate parameterisation of dynamic and mechanistic SDMs remain a challenge until
the paucity of high-quality ecological and monitoring data is alleviated (Oliver et al.,
2012; Kissling, Ahumada, et al.,[2018). Which parameters of a dSDM can be successfully
calibrated depends on the available calibration data. Here, the type of data collected within
monitoring programs plays an important role as all model output quantities can principally
be used for inverse parameterisation. In our case study, for example, the abundances of
juveniles and sub-adults were output from the IBM but could not be used for calibration
because age classes are not distinguished in MHB surveys. Generally, the high uncertainties
in parameter estimates caused by data limitations translate to large credibility intervals
in model predictions, reducing the utility for conservation applications. Here, it is a clear
advantage of the Bayesian framework that sources of prediction uncertainty are explicitly
quantified and can thus be addressed, for example in targeted monitoring programs.

In conclusion, this case study shows how an individual-based dSDM can be built with
RangeShiftR, calibrated using Bayesian inference, and validated by cross-validation. We
demonstrated how the inclusion of monitoring data refined parameter estimates and
greatly improved model fit and prediction accuracy. Well calibrated and validated process-
based models offer compelling advantages over the currently most common static models.
They are able to inform science-based management decisions and the design of proactive
conservation measures (Zurell et al.,2022). Future progress in this field should be directed
towards developing more flexible and accessible modelling tools, assessing their data
requirements for effective parameterisation, and validating them against independent

targets.
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Chapter 4

Demography-environment
relationships improve mechanistic
understanding of range dynamics

under climate change

4.1. Abstract

Species respond to climate change with range and abundance dynamics. To better explain
and predict them, we need a mechanistic understanding of how the underlying demo-
graphic processes are shaped by climatic conditions. Here, we aim to infer demography-
climate relationships from distribution and abundance data.

For this, we developed spatially-explicit, process-based models for eight Swiss breed-
ing bird populations. These jointly consider dispersal, population dynamics and the
climate-dependence of three demographic processes - juvenile survival, adult survival
and fecundity. The models were calibrated to 267 nationwide abundance time-series in a
Bayesian framework.

The fitted models showed moderate to excellent goodness-of-fit and discriminatory
power. The most influential climatic predictors for population performance were the
mean breeding-season temperature and the total winter precipitation. Contemporary
climate change benefitted the population trends of typical mountain birds leading to lower
population losses or even slight increases, whereas lowland birds were adversely affected.

Our results emphasise that generic process-based models embedded in a robust statisti-

cal framework can improve our predictions of range dynamics and may allow disentangling
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the underlying processes. For future research, we advocate a stronger integration of exper-
imental and empirical studies in order to gain more precise insights into the mechanisms

by which climate affects populations.

4.2. Introduction

Changing climatic conditions are impacting natural systems around the globe, causing
rapid biodiversity changes (Parmesan & Yohe, 2003; Hooper et al.,[2012; Rosenzweig &
Neofotis,|2013). Two of the most striking and commonly discussed impacts are distribution
shifts (I.-C. Chen et al.,|2011) (Thompson et al., this issue) and changes in population
abundances (Martay et al.,|2017) (Gregory et al., this issue). These range dynamics result
from an interplay of key ecological processes such as local population dynamics and
dispersal, which are widely considered to be influenced by the environment (Urban et al.,
2016; Fei et al.,|2017). An improved, model-based understanding of how climate affects
range and population dynamics through these key processes may help to better explain
and predict the observed responses (Urban et al.,|2022; Ehrlén & W. F. Morris, |[2015). Such
insights are prerequisite for a quantitative, science-guided basis for deriving effective
conservation measures to mitigate biodiversity loss (Zurell et al.,2022).

A process-based approach to species distribution modelling has been suggested repeat-
edly, going beyond purely correlative models (Guisan & Thuiller,[2005; Cuddington et al.,
2013; Connolly et al.,[2017; Briscoe et al.,[2019). It is expected that process-based models
can provide more reliable predictions under changing conditions by explicitly including
causal eco-evolutionary mechanisms (Evans et al.,|2015; Urban et al.,[2016) and allowing for
the representation of transient dynamics. Progress towards this goal was made with hybrid
models that couple a phenomenological habitat model with processes like population dy-
namics and dispersal (Franklin,2010). However, hybrid models do not allow to establish an
explicit link between demographic processes and the environment. Instead, they assume
that demography scales with a habitat suitability index, that is typically derived from
a correlative model and may combine multiple land cover and climate variables (Singer
et al.,|2018). Yet, the relation of such suitability measures to abundance or growth rate has
been questioned (Weber et al.,|2017; Thuiller et al.,2014). Alternatively, a direct causal link
can be established by considering explicit responses of processes, such as demography, to
environmental predictors. For example, Schurr et al. (2012) proposed a spatially-explicit
process-based model that considers parametric demography-environment relationships
together with mechanistic dispersal effects.

Direct measurements of demography-environment relationships can be obtained by

54



4.2. INTRODUCTION

measuring demographic rates over an environmental gradient, which requires large-scale
and well-designed monitoring schemes (Paniw et al., |2021). This has been done for a
number of plants (Housset et al.,[2016; Treurnicht et al.,[2016), but only rarely for animal
species, for example fish (brown trout, (Cianfrani et al.,|2015)), or birds (North-American
forest birds, (Bonnot et al., 2018), and Arctic sea ducks, (Dunham et al.,|[2021)). As an
alternative to direct measurements, Pagel & Schurr (2012) suggested an inverse modelling
approach that simultaneously estimates the demography-environment relationships and
all other process parameters from empirical data. In the original formulation, they assumed
a logistic growth (as the Ricker model) to describe local population dynamics (Pagel &
Schurr,|2012). Yet, a benchmarking study based on simulated data suggested that dynamic
models with more complex life histories improved predictions of range dynamics (Zurell
et al.,|2016). Such an extension can be achieved with a refined population model that does
not use a compound growth rate but considers explicit demographic sub-processes, such
as survival and fecundity, together with their respective environmental responses.
Individual-based models (IBMs, Railsback & V. Grimm,[2019; DeAngelis & Mooij, [2005)
provide a flexible modelling framework that can accommodate such complex life histories
by considering relevant demographic processes at the scale of individuals. We thus regard
IBMs as ideal candidate for achieving the necessary flexibility (Zurell et al.,[2016). Here, we
extend the statistical framework introduced by Pagel & Schurr (2012) to IBMs and jointly

infer demography-environment relationships and dispersal for initially nine Swiss breeding
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Figure 4.1.: Model workflow: The RangeShifter model (right) has several inputs (green
boxes): (1) Habitat maps that are generated from habitat preferences (based
on expert knowledge), (2) maps of demographic rates that are derived from
demography-climate relationships (DCRs) and climate variables, and (3) disper-
sal parameters. The DCR parameters and dispersal parameters are estimated
inversely in a Bayesian calibration, comparing observed survey data and simu-
lated abundances (yellow boxes).
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bird populations from long-term abundance data. To this end, we explicitly modelled the
demographic sub-processes of juvenile survival, adult survival and fecundity together with
dispersal by single-species IBMs. All our models were built using RangeShifter (Bocedi et al.,
2021; Malchow et al.,|2021), a modular individual-based modelling platform for simulating
spatially-explicit, eco-evolutionary dynamics that can be generically applied to different
species. Within a Bayesian framework, we calibrated the IBMs to abundance time series
from 267 sites across Switzerland that are spanning the last two decades. In this period,
complex range and population dynamics have been observed for Swiss birds (Briscoe et al.,
2021; Maggini et al.,[2011). Mountainous regions like the European Alps are particularly
susceptible to current climate change, and altered temperature and precipitation patterns
are already being observed (Gobiet et al.,[2014). In Switzerland, the detected trend in air
temperature increase over five decades (1959-2008) reached 0.35 K/decade, which amounts
to about 1.6 times the northern hemispheric warming rate (Ceppi et al.,[2012). We therefore
expected that the observed range and population dynamics in Swiss birds are attributable
to the climatic changes of the past decades.

Our goal was to assess if process-based models are able to provide useful predictions
under changing climatic conditions and if they allow inference on the underlying mecha-
nisms. For this, our models related different climate layers, which summarised key climatic
variables during decisive periods of the year, directly to the spatio-temporal variation in
demographic rates. We refer to these relationships as demography-climate relationships
(DCRs), since we considered only climatic predictors. We examine the fitted DCRs for
patterns across species and point out potential limitations in their causal interpretation,
that originate from our data-driven calibration approach. To evaluate the DCRs, we map
the demographic rates (juvenile survival, adult survival, fecundity) as well as the resulting
local growth rate across Switzerland. Based on the calibrated model, we assess the impact
of two decades of contemporary climate change on both the growth rate as well as on
the abundance of each species. Such insights can facilitate the communication of severe
consequences of climate change as well as the design of potential mitigation measures,
targeting the specific demographic processes that are most impacted. Our approach is
applicable to any population for which spatio-temporal abundance data are available. It
can be flexibly extended to allow more detailed conclusions by incorporating more complex

DCRs and using more fine-grained predictors.
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4.3. Materials and Methods

4.3.1. Study area & data

Switzerland features strong elevational gradients, as large parts are located in the European
Alps. The warming rates due to climate change show high spatial and seasonal variance,
with their peak in summer at 0.46 K/decade and large values in the lowlands during
autumn and in middle and high elevations in spring (Ceppi et al.,2012). To describe the
climatic variation over this landscape, we used bioclimatic data from CHELSA v2.1 (Karger
et al.,|2017; Karger et al.,[2018a). It provides monthly means of daily minimum, mean
and maximum temperatures, as w