The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 12 of 1848
Back to Result List

Effects of catchment characteristics and hydro-meteorological scenarios on sediment connectivity in glacierised catchments

  • In the past decade, sediment connectivity has become a widely recognized characteristic of a geomorphic system. However, the quantification of functional connectivity (i.e. connectivity which arises due to the actual occurrence of sediment transport processes) and its variation over space and time is still a challenge. In this context, this study assesses the effects of expected future phenomena in the context of climate change (i.e. glacier retreat, permafrost degradation or meteorological extreme events) on sediment transport dynamics in a glacierised Alpine basin. The study area is the Sulden river basin (drainage area 130 km(2)) in the Italian Alps, which is composed of two geomorphologically diverse sub-basins. Based on graph theory, we evaluated the spatio-temporal variations in functional connectivity in these two sub-basins. The graph-object, obtained by manually mapping sediment transport processes between landforms, was adapted to 6 different hydro-meteorological scenarios, which derive from combining base, heatwave andIn the past decade, sediment connectivity has become a widely recognized characteristic of a geomorphic system. However, the quantification of functional connectivity (i.e. connectivity which arises due to the actual occurrence of sediment transport processes) and its variation over space and time is still a challenge. In this context, this study assesses the effects of expected future phenomena in the context of climate change (i.e. glacier retreat, permafrost degradation or meteorological extreme events) on sediment transport dynamics in a glacierised Alpine basin. The study area is the Sulden river basin (drainage area 130 km(2)) in the Italian Alps, which is composed of two geomorphologically diverse sub-basins. Based on graph theory, we evaluated the spatio-temporal variations in functional connectivity in these two sub-basins. The graph-object, obtained by manually mapping sediment transport processes between landforms, was adapted to 6 different hydro-meteorological scenarios, which derive from combining base, heatwave and rainstorm conditions with snowmelt and glacier-melt periods. For each scenario and each sub-basin, the sediment transport network and related catchment characteristics were analysed. To compare the effects of the scenarios on functional connectivity, we introduced a connectivity degree, calculated based on the area of the landforms involved in sediment cascades. Results indicate that the area of the basin connected to its outlet in terms of sediment transport might feature a six-fold increase in case of rainstorm conditions compared to "average " meteorological conditions assumed for the base scenario. Furthermore, markedly different effects of climate change on sediment connectivity are expected between the two sub-catchments due to their contrasting morphological and lithological characteristics, in terms of relative importance of rainfall triggered colluvial processes vs temperature-driven proglacial fluvial dynamics.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Anuschka Buter, Tobias HeckmannORCiDGND, Lorenzo Filisetti, Sara SaviORCiD, Luca Mao, Bernhard GemsORCiD, Francesco ComitiORCiD
DOI:https://doi.org/10.1016/j.geomorph.2022.108128
ISSN:0169-555X
ISSN:1872-695X
Title of parent work (English):Geomorphology : an international journal on pure and applied geomorphology
Publisher:Elsevier
Place of publishing:Amsterdam
Publication type:Article
Language:English
Date of first publication:2022/04/01
Publication year:2022
Release date:2024/05/24
Tag:Climate change; Functional connectivity; Geomorphic systems; Graph theory
Volume:402
Article number:108128
Number of pages:17
Funding institution:German Academic Exchange Service (DAAD) [08/2017-10/2018]; Autonomous; Province of Bozen-Bolzano; Open Access Publishing Fund of the Free; University of Bozen-Bolzano
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Geowissenschaften
DDC classification:5 Naturwissenschaften und Mathematik / 55 Geowissenschaften, Geologie / 550 Geowissenschaften
Peer review:Referiert
Publishing method:Open Access / Hybrid Open-Access
License (German):License LogoCC-BY-NC-ND - Namensnennung, nicht kommerziell, keine Bearbeitungen 4.0 International
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.