• Treffer 31 von 283
Zurück zur Trefferliste

Emissive and charge-generating donor-acceptor interfaces for organic optoelectronics with low voltage losses

  • Intermolecular charge-transfer states at the interface between electron donating (D) and accepting (A) materials are crucial for the operation of organic solar cells but can also be exploited for organic light-emitting diodes(1,2). Non-radiative charge-transfer state decay is dominant in state-of-the-art D-A-based organic solar cells and is responsible for large voltage losses and relatively low power-conversion efficiencies as well as electroluminescence external quantum yields in the 0.01-0.0001% range(3,4). In contrast, the electroluminescence external quantum yield reaches up to 16% in D-A-based organic light-emitting diodes(5-7). Here, we show that proper control of charge-transfer state properties allows simultaneous occurrence of a high photovoltaic and emission quantum yield within a single, visible-light-emitting D-A system. This leads to ultralow-emission turn-on voltages as well as significantly reduced voltage losses upon solar illumination. These results unify the description of the electro-optical properties ofIntermolecular charge-transfer states at the interface between electron donating (D) and accepting (A) materials are crucial for the operation of organic solar cells but can also be exploited for organic light-emitting diodes(1,2). Non-radiative charge-transfer state decay is dominant in state-of-the-art D-A-based organic solar cells and is responsible for large voltage losses and relatively low power-conversion efficiencies as well as electroluminescence external quantum yields in the 0.01-0.0001% range(3,4). In contrast, the electroluminescence external quantum yield reaches up to 16% in D-A-based organic light-emitting diodes(5-7). Here, we show that proper control of charge-transfer state properties allows simultaneous occurrence of a high photovoltaic and emission quantum yield within a single, visible-light-emitting D-A system. This leads to ultralow-emission turn-on voltages as well as significantly reduced voltage losses upon solar illumination. These results unify the description of the electro-optical properties of charge-transfer states in organic optoelectronic devices and foster the use of organic D-A blends in energy conversion applications involving visible and ultraviolet photons(8-11).zeige mehrzeige weniger

Metadaten exportieren

Weitere Dienste

Suche bei Google Scholar Statistik - Anzahl der Zugriffe auf das Dokument
Metadaten
Verfasserangaben:Sascha Ullbrich, Johannes BenduhnORCiD, Xiangkun Jia, Vasileios C. Nikolis, Kristofer TvingstedtORCiD, Fortunato Piersimoni, Steffen RolandORCiDGND, Yuan Liu, Jinhan Wu, Axel Fischer, Dieter NeherORCiDGND, Sebastian ReinekeORCiD, Donato SpoltoreORCiD, Koen VandewalORCiD
DOI:https://doi.org/10.1038/s41563-019-0324-5
ISSN:1476-1122
ISSN:1476-4660
Pubmed ID:https://pubmed.ncbi.nlm.nih.gov/30936478
Titel des übergeordneten Werks (Englisch):Nature materials
Verlag:Nature Publ. Group
Verlagsort:London
Publikationstyp:Wissenschaftlicher Artikel
Sprache:Englisch
Datum der Erstveröffentlichung:01.04.2019
Erscheinungsjahr:2019
Datum der Freischaltung:26.02.2021
Freies Schlagwort / Tag:Electronics, photonics and device physics; Optoelectronic devices and components; Photonic devices; Solar energy and photovoltaic technology
Band:18
Ausgabe:5
Seitenanzahl:7
Erste Seite:459
Letzte Seite:464
Fördernde Institution:German Federal Ministry for Education and Research (BMBF)Federal Ministry of Education & Research (BMBF) [03IPT602X]; German Research Foundation (DFG)German Research Foundation (DFG) [VA 1035/5-1]; China Scholarship CouncilChina Scholarship Council [201706140127, 201506920047]; DFGGerman Research Foundation (DFG) [382633022, SFB 951, RE 3198/6-1]
Organisationseinheiten:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Physik und Astronomie
DDC-Klassifikation:5 Naturwissenschaften und Mathematik / 53 Physik / 530 Physik
Peer Review:Referiert
Verstanden ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.