• search hit 1 of 1
Back to Result List

CO2 acquisition in Chlamydomonas acidophila is influenced mainly by CO2, not phosphorus, availability

  • The extremophilic green microalga Chlamydomonas acidophila grows in very acidic waters (pH 2.3-3.4), where CO2 is the sole inorganic carbon source. Previous work has revealed that the species can accumulate inorganic carbon (Ci) and exhibits high affinity CO2 utilization under low-CO2 (air-equilibrium) conditions, similar to organisms with an active CO2 concentrating mechanism (CCM), whereas both processes are down-regulated under high CO2 (4.5 % CO2) conditions. Responses of this species to phosphorus (Pi)-limited conditions suggested a contrasting regulation of the CCM characteristics. Therefore, we measured external carbonic anhydrase (CA(ext)) activities and protein expression (CAH1), the internal pH, Ci accumulation, and CO2-utilization in cells adapted to high or low CO2 under Pi-replete and Pi-limited conditions. Results reveal that C. acidophila expressed CA(ext) activity and expressed a protein cross-reacting with CAH1 (the CA(ext) from Chlamydomonas reinhardtii). Although the function of this CA remains unclear, CA(ext)The extremophilic green microalga Chlamydomonas acidophila grows in very acidic waters (pH 2.3-3.4), where CO2 is the sole inorganic carbon source. Previous work has revealed that the species can accumulate inorganic carbon (Ci) and exhibits high affinity CO2 utilization under low-CO2 (air-equilibrium) conditions, similar to organisms with an active CO2 concentrating mechanism (CCM), whereas both processes are down-regulated under high CO2 (4.5 % CO2) conditions. Responses of this species to phosphorus (Pi)-limited conditions suggested a contrasting regulation of the CCM characteristics. Therefore, we measured external carbonic anhydrase (CA(ext)) activities and protein expression (CAH1), the internal pH, Ci accumulation, and CO2-utilization in cells adapted to high or low CO2 under Pi-replete and Pi-limited conditions. Results reveal that C. acidophila expressed CA(ext) activity and expressed a protein cross-reacting with CAH1 (the CA(ext) from Chlamydomonas reinhardtii). Although the function of this CA remains unclear, CA(ext) activity and high affinity CO2 utilization were the highest under low CO2 conditions. C. acidophila accumulated Ci and expressed the CAH1 protein under all conditions tested, and C. reinhardtii also contained substantial amounts of CAH1 protein under Pi-limitation. In conclusion, Ci utilization is optimized in C. acidophila under ecologically relevant conditions, which may enable optimal survival in its extreme Ci- and Pi-limited habitat. The exact physiological and biochemical acclimation remains to be further studied.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Elly SpijkermanORCiD, Slobodanka Stojkovic, John Beardall
DOI:https://doi.org/10.1007/s11120-014-0016-6
ISSN:0166-8595
ISSN:1573-5079
Pubmed ID:https://pubmed.ncbi.nlm.nih.gov/24906887
Title of parent work (English):Photosynthesis research
Publisher:Springer
Place of publishing:Dordrecht
Publication type:Article
Language:English
Year of first publication:2014
Publication year:2014
Release date:2017/03/27
Tag:Affinity for CO2 uptake; CO2 concentrating mechanism; Co-limitation; Extremophilic green alga; Inorganic carbon accumulation; Inorganic phosphorus limitation; Internal pH; Varying CO2 condition
Volume:121
Issue:2-3
Number of pages:9
First page:213
Last Page:221
Funding institution:German Science Foundation [SP695/4-2, SP 695/5]; Australian Research Council
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Biochemie und Biologie
Peer review:Referiert
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.