The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 31 of 3549
Back to Result List

The fractional energy balance equation for climate projections through 2100

  • We produce climate projections through the 21st century using the fractional energy balance equation (FEBE): a generalization of the standard energy balance equation (EBE). The FEBE can be derived from Budyko-Sellers models or phenomenologically through the application of the scaling symmetry to energy storage processes, easily implemented by changing the integer order of the storage (derivative) term in the EBE to a fractional value. The FEBE is defined by three parameters: a fundamental shape parameter, a timescale and an amplitude, corresponding to, respectively, the scaling exponent h, the relaxation time tau and the equilibrium climate sensitivity (ECS). Two additional parameters were needed for the forcing: an aerosol recalibration factor alpha to account for the large aerosol uncertainty and a volcanic intermittency correction exponent upsilon. A Bayesian framework based on historical temperatures and natural and anthropogenic forcing series was used for parameter estimation. Significantly, the error model was not ad hoc butWe produce climate projections through the 21st century using the fractional energy balance equation (FEBE): a generalization of the standard energy balance equation (EBE). The FEBE can be derived from Budyko-Sellers models or phenomenologically through the application of the scaling symmetry to energy storage processes, easily implemented by changing the integer order of the storage (derivative) term in the EBE to a fractional value. The FEBE is defined by three parameters: a fundamental shape parameter, a timescale and an amplitude, corresponding to, respectively, the scaling exponent h, the relaxation time tau and the equilibrium climate sensitivity (ECS). Two additional parameters were needed for the forcing: an aerosol recalibration factor alpha to account for the large aerosol uncertainty and a volcanic intermittency correction exponent upsilon. A Bayesian framework based on historical temperatures and natural and anthropogenic forcing series was used for parameter estimation. Significantly, the error model was not ad hoc but rather predicted by the model itself: the internal variability response to white noise internal forcing. The 90 % credible interval (CI) of the exponent and relaxation time were h = [0.33, 0.44] (median = 0.38) and tau = [2.4, 7.0] (median = 4.7) years compared to the usual EBE h = 1, and literature values of tau typically in the range 2-8 years. Aerosol forcings were too strong, requiring a decrease by an average factor alpha = [0.2, 1.0] (median = 0.6); the volcanic intermittency correction exponent was upsilon = [0.15, 0.41] (median = 0.28) compared to standard values alpha = upsilon = 1. The overpowered aerosols support a revision of the global modern (2005) aerosol forcing 90 % CI to a narrower range [ -1.0, -0.2] W m(-2). The key parameter ECS in comparison to IPCC AR5 (and to the CMIP6 MME), the 90 % CI range is reduced from [1.5, 4.5] K ([2.0, 5.5] K) to [1.6, 2.4] K ([1.5, 2.2] K), with median value lowered from 3.0 K (3.7 K) to 2.0 K (1.8 K) Similarly we found for the transient climate response (TCR), the 90 % CI range shrinks from [1.0, 2.5] K ([1.2, 2.8] K) to [1.2, 1.8] K ([1.1, 1.6] K) and the median estimate decreases from 1.8 K (2.0 K) to 1.5 K (1.4 K). As often seen in other observational-based studies, the FEBE values for climate sensitivities are therefore somewhat lower but still consistent with those in IPCC AR5 and the CMIP6 MME. <br /> Using these parameters, we made projections to 2100 using both the Representative Concentration Pathway (RCP) and Shared Socioeconomic Pathway (SSP) scenarios, and compared them to the corresponding CMIP5 and CMIP6 multi-model ensembles (MMEs). The FEBE historical reconstructions (1880-2020) closely follow observations, notably during the 1998-2014 slowdown ("hiatus"). We also reproduce the internal variability with the FEBE and statistically validate this against centennial-scale temperature observations. Overall, the FEBE projections were 10 %-15 % lower but due to their smaller uncertainties, their 90 % CIs lie completely within the GCM 90 % CIs. This agreement means that the FEBE validates the MME, and vice versa.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Roman ProcykORCiD, Shaun LovejoyORCiDGND, Raphaёl HébertORCiDGND
DOI:https://doi.org/10.5194/esd-13-81-2022
ISSN:2190-4979
ISSN:2190-4987
Title of parent work (English):Earth system dynamics / European Geosciences Union
Publisher:Copernicus
Place of publishing:Göttingen
Publication type:Article
Language:English
Date of first publication:2022/01/19
Publication year:2022
Release date:2024/03/06
Volume:13
Issue:1
Number of pages:27
First page:81
Last Page:107
Funding institution:European Research Council (ERC) under the European Union's Horizon 2020; research and innovation programme [716092, 772852]
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Geowissenschaften
DDC classification:5 Naturwissenschaften und Mathematik / 55 Geowissenschaften, Geologie / 550 Geowissenschaften
Peer review:Referiert
Publishing method:Open Access / Gold Open-Access
DOAJ gelistet
License (German):License LogoCC-BY - Namensnennung 4.0 International
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.