The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 44 of 3549
Back to Result List

COH-fluid induced metasomatism of peridotites in the forearc mantle

  • Devolatilization of subducting lithologies liberates COH-fluids. These may become partially sequestered in peridotites in the slab and the overlying forearc mantle, affecting the cycling of volatiles and fluid mobile elements in subduction zones. Here we assess the magnitudes, timescales and mechanism of channelized injection of COH-fluids doped with Ca-aq(2+), Sr-aq(2+) and Ba-aq(2+) into the dry forearc mantle by performing piston cylinder experiments between 1-2.5 GPa and 600-700 degrees C. Cylindrical cores of natural spinel-bearing harzburgites were used as starting materials. Based on mineral assemblage and composition three reaction zones are distinguishable from the rim towards the core of primary olivine and orthopyroxene grains. Zone 1 contains carbonates + quartz +/- kyanite and zone 2 contains carbonates + talc +/- chlorite. Olivine is further replaced in zone 3 by either antigorite+ magnesite or magnesite +talc within or above antigorite stability, respectively. Orthopyroxene is replaced in zone 3 by talc + chlorite.Devolatilization of subducting lithologies liberates COH-fluids. These may become partially sequestered in peridotites in the slab and the overlying forearc mantle, affecting the cycling of volatiles and fluid mobile elements in subduction zones. Here we assess the magnitudes, timescales and mechanism of channelized injection of COH-fluids doped with Ca-aq(2+), Sr-aq(2+) and Ba-aq(2+) into the dry forearc mantle by performing piston cylinder experiments between 1-2.5 GPa and 600-700 degrees C. Cylindrical cores of natural spinel-bearing harzburgites were used as starting materials. Based on mineral assemblage and composition three reaction zones are distinguishable from the rim towards the core of primary olivine and orthopyroxene grains. Zone 1 contains carbonates + quartz +/- kyanite and zone 2 contains carbonates + talc +/- chlorite. Olivine is further replaced in zone 3 by either antigorite+ magnesite or magnesite +talc within or above antigorite stability, respectively. Orthopyroxene is replaced in zone 3 by talc + chlorite. Mineral assemblages and the compositions of secondary minerals depend on fluid composition and the replaced primary silicate. The extent of alteration depends on fluid CO2 content and fluid/rock-ratio, and is further promoted by fluid permeable reaction zones and reaction driven cracking. Our results show that COH-fluid induced metasomatism of the forearc mantle is self-perpetuating and efficient at sequestering Ca-aq(2+), Sr-aq(2+), Ba-aq(2+) and CO2aq into newly formed carbonates. This process is fast with 90% of the available C sequestered and nearly 50% of the initial minerals altered at 650 degrees C, 2 GPa within 55 h. The dissolution of primary silicates under high COH-fluid/rock-ratios, as in channelized fluid flow, enriches SiO2aq in the fluid, while CO2aq is sequestered into carbonates. In an open system, the remaining CO2-depleted, Si-enriched aqueous fluid may cause Si-metasomatism in the forearc further away from the injection of the COH-fluid into peridotite.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Melanie Jutta SieberORCiDGND, Greg YaxleyORCiD, Jörg Hermann
DOI:https://doi.org/10.1007/s00410-022-01905-w
ISSN:0010-7999
ISSN:1432-0967
Title of parent work (English):Contributions to Mineralogy and Petrology
Publisher:Springer
Place of publishing:New York
Publication type:Article
Language:English
Date of first publication:2022/04/05
Publication year:2022
Release date:2024/02/16
Tag:COH-fluid; Carbonation; Deep carbon cycle; Forearc; HP-experiments
Volume:177
Issue:4
Article number:44
Number of pages:22
Funding institution:ARC Discovery Grant [DP14010089]; ANU PhD stipend; Mervyn and Katalin; Paterson fellowship
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Geowissenschaften
DDC classification:5 Naturwissenschaften und Mathematik / 55 Geowissenschaften, Geologie / 550 Geowissenschaften
Peer review:Referiert
Publishing method:Open Access / Hybrid Open-Access
License (German):License LogoCC-BY - Namensnennung 4.0 International
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.