Das Suchergebnis hat sich seit Ihrer Suchanfrage verändert. Eventuell werden Dokumente in anderer Reihenfolge angezeigt.
  • Treffer 50 von 1571
Zurück zur Trefferliste

Second-order accurate ensemble transform particle filters

  • Particle filters (also called sequential Monte Carlo methods) are widely used for state and parameter estimation problems in the context of nonlinear evolution equations. The recently proposed ensemble transform particle filter (ETPF) [S. Reich, SIAM T. Sci. Comput., 35, (2013), pp. A2013-A2014[ replaces the resampling step of a standard particle filter by a linear transformation which allows for a hybridization of particle filters with ensemble Kalman filters and renders the resulting hybrid filters applicable to spatially extended systems. However, the linear transformation step is computationally expensive and leads to an underestimation of the ensemble spread for small and moderate ensemble sizes. Here we address both of these shortcomings by developing second order accurate extensions of the ETPF. These extensions allow one in particular to replace the exact solution of a linear transport problem by its Sinkhorn approximation. It is also demonstrated that the nonlinear ensemble transform filter arises as a special case of ourParticle filters (also called sequential Monte Carlo methods) are widely used for state and parameter estimation problems in the context of nonlinear evolution equations. The recently proposed ensemble transform particle filter (ETPF) [S. Reich, SIAM T. Sci. Comput., 35, (2013), pp. A2013-A2014[ replaces the resampling step of a standard particle filter by a linear transformation which allows for a hybridization of particle filters with ensemble Kalman filters and renders the resulting hybrid filters applicable to spatially extended systems. However, the linear transformation step is computationally expensive and leads to an underestimation of the ensemble spread for small and moderate ensemble sizes. Here we address both of these shortcomings by developing second order accurate extensions of the ETPF. These extensions allow one in particular to replace the exact solution of a linear transport problem by its Sinkhorn approximation. It is also demonstrated that the nonlinear ensemble transform filter arises as a special case of our general framework. We illustrate the performance of the second-order accurate filters for the chaotic Lorenz-63 and Lorenz-96 models and a dynamic scene-viewing model. The numerical results for the Lorenz-63 and Lorenz-96 models demonstrate that significant accuracy improvements can be achieved in comparison to a standard ensemble Kalman filter and the ETPF for small to moderate ensemble sizes. The numerical results for the scene-viewing model reveal, on the other hand, that second-order corrections can lead to statistically inconsistent samples from the posterior parameter distribution.zeige mehrzeige weniger

Metadaten exportieren

Weitere Dienste

Suche bei Google Scholar Statistik - Anzahl der Zugriffe auf das Dokument
Metadaten
Verfasserangaben:Walter Acevedo, Jana De WiljesORCiDGND, Sebastian ReichORCiDGND
DOI:https://doi.org/10.1137/16M1095184
ISSN:1064-8275
ISSN:1095-7197
ISSN:2168-3417
Titel des übergeordneten Werks (Englisch):SIAM journal on scientific computing
Verlag:Society for Industrial and Applied Mathematics
Verlagsort:Philadelphia
Publikationstyp:Wissenschaftlicher Artikel
Sprache:Englisch
Datum der Erstveröffentlichung:06.09.2017
Erscheinungsjahr:2017
Datum der Freischaltung:20.10.2022
Freies Schlagwort / Tag:Bayesian inference; Sinkhorn approximation; data assimilation; ensemble Kalman filter; particle filter
Band:39
Ausgabe:5
Seitenanzahl:17
Erste Seite:A1834
Letzte Seite:A1850
Organisationseinheiten:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Mathematik
DDC-Klassifikation:5 Naturwissenschaften und Mathematik / 51 Mathematik / 510 Mathematik
Peer Review:Referiert
Verstanden ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.