The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 124 of 3549
Back to Result List

Nanorocks, volatiles and plate tectonics

  • The global geological volatile cycle (H, C, N) plays an important role in the long term self-regulation of the Earth system. However, the complex interaction between its deep, solid Earth components (i.e. crust and mantle), Earth's fluid envelopes (i.e. atmosphere and hydrosphere) and plate tectonic processes is a subject of ongoing debate. In this study we want to draw attention to how the presence of primary melt (MI) and fluid (FI) inclusions in high-grade metamorphic minerals could help constrain the crustal component of the volatile cycle. To that end, we review the distribution of MI and FI throughout Earth's history, from ca. 3.0 Ga ago up to the present day. We argue that the lower crust might constitute an important, long-term, volatile storage unit, capable to influence the composition of the surface envelopes through the mean of weathering, crustal thickening, partial melting and crustal assimilation during volcanic activity. Combined with thermodynamic modelling, our compilation indicates that periods of well-establishedThe global geological volatile cycle (H, C, N) plays an important role in the long term self-regulation of the Earth system. However, the complex interaction between its deep, solid Earth components (i.e. crust and mantle), Earth's fluid envelopes (i.e. atmosphere and hydrosphere) and plate tectonic processes is a subject of ongoing debate. In this study we want to draw attention to how the presence of primary melt (MI) and fluid (FI) inclusions in high-grade metamorphic minerals could help constrain the crustal component of the volatile cycle. To that end, we review the distribution of MI and FI throughout Earth's history, from ca. 3.0 Ga ago up to the present day. We argue that the lower crust might constitute an important, long-term, volatile storage unit, capable to influence the composition of the surface envelopes through the mean of weathering, crustal thickening, partial melting and crustal assimilation during volcanic activity. Combined with thermodynamic modelling, our compilation indicates that periods of well-established plate tectonic regimes at <0.85 Ga and 1.7-2.1 Ga, might be more prone to the reworking of supracrustal lithologies and the storage of volatiles in the lower crust. Such hypothesis has implication beyond the scope of metamorphic petrology as it potentially links geodynamic mechanisms to habitable surface conditions. MI and FI in metamorphic crustal rocks then represent an invaluable archive to assess and quantify the co-joint evolution of plate tectonics and Earth's external processes. (C) 2021 China University of Geosciences (Beijing) and Peking University. Production and hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Gautier NicoliORCiD, Silvio FerreroORCiDGND
DOI:https://doi.org/10.1016/j.gsf.2021.101188
ISSN:1674-9871
Title of parent work (English):Geoscience frontiers
Publisher:Amsterdam [u.a.]
Place of publishing:Elsevier
Publication type:Article
Language:English
Date of first publication:2021/04/03
Publication year:2021
Release date:2023/11/21
Tag:Lower crust; Nanorocks; Plate tectonics; Volatiles
Volume:12
Issue:5
Article number:101188
Number of pages:13
Funding institution:Alexander von Humboldt FoundationAlexander von Humboldt Foundation; German Federal Ministry for Education and ResearchFederal Ministry of Education & Research (BMBF); Deutsche ForschungsgemeinschaftGerman Research Foundation (DFG) [FE 1527/2-2]
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Geowissenschaften
DDC classification:5 Naturwissenschaften und Mathematik / 55 Geowissenschaften, Geologie / 550 Geowissenschaften
Peer review:Referiert
Publishing method:Open Access / Gold Open-Access
DOAJ gelistet
License (German):License LogoCC-BY-NC-ND - Namensnennung, nicht kommerziell, keine Bearbeitungen 4.0 International
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.