• search hit 3 of 3
Back to Result List

Combined UV-Vis-absorbance and reflectance spectroscopy study of dye transfer kinetics in aqueous mixtures of surfactants

  • We report an analytical approach to study the competitive processes of solubilisation in micelles and of adsorption onto hydrophobic surfaces of poorly soluble hydrophobic dyes. The method is demonstrated on model systems containing two sources of Disperse Red 60: a bulk powder and a donor red textile, with molecularly dissolved dye stabilised in an aqueous environment by mixed micelles of anionic and non-ionic surfactants. The process of dye transfer between a donor textile (red polyester), surfactant micelles and an acceptor textile (white polyamide) was quantified by a combination of colorimetric analyses. UV-Vis absorbance was used to follow the extraction of the dye and to evaluate the solubilisation capacity of the micellar solution. A calibration curve for textile reflectance versus the adsorbed dye was generated to quantify the mass of dye transferred onto the acceptor textile. A combination of both techniques allowed us to compare the amount of dye desorbed from the donor textile and adsorbed onto the acceptor textile as aWe report an analytical approach to study the competitive processes of solubilisation in micelles and of adsorption onto hydrophobic surfaces of poorly soluble hydrophobic dyes. The method is demonstrated on model systems containing two sources of Disperse Red 60: a bulk powder and a donor red textile, with molecularly dissolved dye stabilised in an aqueous environment by mixed micelles of anionic and non-ionic surfactants. The process of dye transfer between a donor textile (red polyester), surfactant micelles and an acceptor textile (white polyamide) was quantified by a combination of colorimetric analyses. UV-Vis absorbance was used to follow the extraction of the dye and to evaluate the solubilisation capacity of the micellar solution. A calibration curve for textile reflectance versus the adsorbed dye was generated to quantify the mass of dye transferred onto the acceptor textile. A combination of both techniques allowed us to compare the amount of dye desorbed from the donor textile and adsorbed onto the acceptor textile as a function of time for systems undergoing exhaustion-solubilisation mechanisms and only solubilisation mechanism. Up to similar or equal to 10 min of the washing process, the released dye is predominantly solubilised in surfactant micelles. At later times, the adsorption of the dye on the hydrophobic surface is energetically favoured. The shift of the desorption equilibrium in the presence of the acceptor textile results in similar or equal to 30% increase in the release of the dye. The reported methodology provides direct comparative analysis between the solubilisation capacity of amphiphilic stabilisers and the tendency of the dye to adsorb on solid substrates, important for designing novel concepts of disperse dye solubilisation and dye transfer inhibition during textile washing.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Carlos G. LopezORCiD, Anna Manova, Corinna Hoppe, Michael Dreja, Peter Schmiedel, Mareile Job, Walter RichteringORCiD, Alexander BökerORCiDGND, Larisa A. Tsarkova
DOI:https://doi.org/10.1016/j.colsurfa.2018.04.024
ISSN:0927-7757
ISSN:1873-4359
Title of parent work (English):Colloids and surfaces : an international journal devoted to the principles and applications of colloid and interface science ; A, Physicochemical and engineering aspects
Publisher:Elsevier
Place of publishing:Amsterdam
Publication type:Article
Language:English
Year of first publication:2018
Publication year:2018
Release date:2021/10/18
Tag:Colorimetric analysis; Detergent; Disperse dyes; Dye transfer; Surfactants; Washing fastness
Volume:550
Number of pages:8
First page:74
Last Page:81
Funding institution:Henkel, Innovation Campus for Advanced Sustainable Technologies (HICAST) project
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Physik und Astronomie
DDC classification:5 Naturwissenschaften und Mathematik / 53 Physik / 530 Physik
Peer review:Referiert
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.