• search hit 8 of 11
Back to Result List

The periglacial engine of mountain erosion - Part 2: Modelling large-scale landscape evolution

  • There is growing recognition of strong periglacial control on bedrock erosion in mountain landscapes, including the shaping of low-relief surfaces at high elevations (summit flats). But, as yet, the hypothesis that frost action was crucial to the assumed Late Cenozoic rise in erosion rates remains compelling and untested. Here we present a landscape evolution model incorporating two key periglacial processes - regolith production via frost cracking and sediment transport via frost creep - which together are harnessed to variations in temperature and the evolving thickness of sediment cover. Our computational experiments time-integrate the contribution of frost action to shaping mountain topography over million-year timescales, with the primary and highly reproducible outcome being the development of flattish or gently convex summit flats. A simple scaling of temperature to marine delta O-18 records spanning the past 14 Myr indicates that the highest summit flats in mid-to high-latitude mountains may have formed via frost action priorThere is growing recognition of strong periglacial control on bedrock erosion in mountain landscapes, including the shaping of low-relief surfaces at high elevations (summit flats). But, as yet, the hypothesis that frost action was crucial to the assumed Late Cenozoic rise in erosion rates remains compelling and untested. Here we present a landscape evolution model incorporating two key periglacial processes - regolith production via frost cracking and sediment transport via frost creep - which together are harnessed to variations in temperature and the evolving thickness of sediment cover. Our computational experiments time-integrate the contribution of frost action to shaping mountain topography over million-year timescales, with the primary and highly reproducible outcome being the development of flattish or gently convex summit flats. A simple scaling of temperature to marine delta O-18 records spanning the past 14 Myr indicates that the highest summit flats in mid-to high-latitude mountains may have formed via frost action prior to the Quaternary. We suggest that deep cooling in the Quaternary accelerated mechanical weathering globally by significantly expanding the area subject to frost. Further, the inclusion of subglacial erosion alongside periglacial processes in our computational experiments points to alpine glaciers increasing the long-term efficiency of frost-driven erosion by steepening hillslopes.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:D. L. Egholm, Jane Lund Andersen, M. F. Knudsen, John D. JansenORCiD, S. B. Nielsen
DOI:https://doi.org/10.5194/esurf-3-463-2015
ISSN:2196-6311
ISSN:2196-632X
Title of parent work (English):Earth surface dynamics
Publisher:Copernicus
Place of publishing:Göttingen
Publication type:Article
Language:English
Year of first publication:2015
Publication year:2015
Release date:2017/03/27
Volume:3
Issue:4
Number of pages:20
First page:463
Last Page:482
Funding institution:Danish Council for Independent Research; Aarhus University Research Foundation; Australian Research Council [DP130104023]; Marie Curie fellowship (FP7) via the Brandenburg Research Academy
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Geowissenschaften
Peer review:Referiert
Publishing method:Open Access
Institution name at the time of the publication:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Erd- und Umweltwissenschaften
External remark:Zweitveröffentlichung in der Schriftenreihe Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe ; 552
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.