• Treffer 53 von 329
Zurück zur Trefferliste

Pseudo-differential operators and deformation quantization

  • Using the Riemannian connection on a compact manifold X, we show that the algebra of classical pseudo-differential operators on X generates a canonical deformation quantization on the cotangent manifold T*X. The corresponding Abelian connection is calculated explicitly in terms of the of the exponential mapping. We prove also that the index theorem for elliptic operators may be obtained as a consequence of the index theorem for deformation quantization.

Volltext Dateien herunterladen

Metadaten exportieren

Weitere Dienste

Suche bei Google Scholar Statistik - Anzahl der Zugriffe auf das Dokument
Metadaten
Verfasserangaben:Boris Fedosov
URN:urn:nbn:de:kobv:517-opus-25651
Schriftenreihe (Bandnummer):Preprint ((1999) 32)
Publikationstyp:Preprint
Sprache:Englisch
Erscheinungsjahr:1999
Veröffentlichende Institution:Universität Potsdam
Datum der Freischaltung:04.11.2008
RVK - Regensburger Verbundklassifikation:SI 990
Organisationseinheiten:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Mathematik
DDC-Klassifikation:5 Naturwissenschaften und Mathematik / 51 Mathematik / 510 Mathematik
Sammlung(en):Universität Potsdam / Schriftenreihen / Preprint / Universität Potsdam, Institut für Mathematik, Arbeitsgruppe Partielle Differentialgleichungen und Komplexe Analysis
Universität Potsdam / Schriftenreihen / Preprint / Universität Potsdam, Institut für Mathematik, Arbeitsgruppe Partielle Differentialgleichungen und Komplexe Analysis / 1999
Lizenz (Deutsch):License LogoKeine öffentliche Lizenz: Unter Urheberrechtsschutz
Externe Anmerkung:
Die Printversion kann in der Universitätsbibliothek Potsdam eingesehen werden:
Preprint / Universität Potsdam, Institut für Mathematik, Arbeitsgruppe Partielle Differentialgleichungen und Komplexe Analysis, 1997-

Die Online-Fassung wird auf der Homepage des Instituts für Mathematik veröffentlicht.

Verstanden ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.