• search hit 15 of 20
Back to Result List

Perturbation analysis of the Kuramoto phase-diffusion equation subject to quenched frequency disorder

  • The Kuramoto phase-diffusion equation is a nonlinear partial differential equation which describes the spatiotemporal evolution of a phase variable in an oscillatory reaction-diffusion system. Synchronization manifests itself in a stationary phase gradient where all phases throughout a system evolve with the same velocity, the synchronization frequency. The formation of concentric waves can be explained by local impurities of higher frequency which can entrain their surroundings. Concentric waves in synchronization also occur in heterogeneous systems, where the local frequencies are distributed randomly. We present a perturbation analysis of the synchronization frequency where the perturbation is given by the heterogeneity of natural frequencies in the system. The nonlinearity in the form of dispersion leads to an overall acceleration of the oscillation for which the expected value can be calculated from the second-order perturbation terms. We apply the theory to simple topologies, like a line or sphere, and deduce the dependence ofThe Kuramoto phase-diffusion equation is a nonlinear partial differential equation which describes the spatiotemporal evolution of a phase variable in an oscillatory reaction-diffusion system. Synchronization manifests itself in a stationary phase gradient where all phases throughout a system evolve with the same velocity, the synchronization frequency. The formation of concentric waves can be explained by local impurities of higher frequency which can entrain their surroundings. Concentric waves in synchronization also occur in heterogeneous systems, where the local frequencies are distributed randomly. We present a perturbation analysis of the synchronization frequency where the perturbation is given by the heterogeneity of natural frequencies in the system. The nonlinearity in the form of dispersion leads to an overall acceleration of the oscillation for which the expected value can be calculated from the second-order perturbation terms. We apply the theory to simple topologies, like a line or sphere, and deduce the dependence of the synchronization frequency on the size and the dimension of the oscillatory medium. We show that our theory can be extended to include rotating waves in a medium with periodic boundary conditions. By changing a system parameter, the synchronized state may become quasidegenerate. We demonstrate how perturbation theory fails at such a critical point.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Ralf ToenjesORCiD, Bernd BlasiusORCiDGND
URL:http://pre.aps.org/
DOI:https://doi.org/10.1103/Physreve.79.016112
ISSN:1539-3755
Publication type:Article
Language:English
Year of first publication:2009
Publication year:2009
Release date:2017/03/25
Source:Physical review E. - ISSN 1539-3755. - 79 (2009), 1, Art. 016112
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Physik und Astronomie
Peer review:Referiert
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.