The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 10 of 2487
Back to Result List

Empirical evidence for recent global shifts in vegetation resilience

  • The authors demonstrate that a vegetation system's ability to recover from disturbances-its resilience-can be estimated from its natural variability. Global patterns of resilience loss and gains since the early 1990s reveal shifts towards widespread resilience loss since the early 2000s. The character and health of ecosystems worldwide is tightly coupled to changes in Earth's climate. Theory suggests that ecosystem resilience-the ability of ecosystems to resist and recover from external shocks such as droughts and fires-can be inferred from their natural variability. Here, we quantify vegetation resilience globally with complementary metrics based on two independent long-term satellite records. We first empirically confirm that the recovery rates from large perturbations can be closely approximated from internal vegetation variability across vegetation types and climate zones. On the basis of this empirical relationship, we quantify vegetation resilience continuously and globally from 1992 to 2017. Long-term vegetation resilienceThe authors demonstrate that a vegetation system's ability to recover from disturbances-its resilience-can be estimated from its natural variability. Global patterns of resilience loss and gains since the early 1990s reveal shifts towards widespread resilience loss since the early 2000s. The character and health of ecosystems worldwide is tightly coupled to changes in Earth's climate. Theory suggests that ecosystem resilience-the ability of ecosystems to resist and recover from external shocks such as droughts and fires-can be inferred from their natural variability. Here, we quantify vegetation resilience globally with complementary metrics based on two independent long-term satellite records. We first empirically confirm that the recovery rates from large perturbations can be closely approximated from internal vegetation variability across vegetation types and climate zones. On the basis of this empirical relationship, we quantify vegetation resilience continuously and globally from 1992 to 2017. Long-term vegetation resilience trends are spatially heterogeneous, with overall increasing resilience in the tropics and decreasing resilience at higher latitudes. Shorter-term trends, however, reveal a marked shift towards a global decline in vegetation resilience since the early 2000s, particularly in the equatorial rainforest belt.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Taylor SmithORCiDGND, Dominik TraxlORCiDGND, Niklas BoersORCiDGND
DOI:https://doi.org/10.1038/s41558-022-01352-2
ISSN:1758-678X
ISSN:1758-6798
Title of parent work (English):Nature climate change
Publisher:Nature Publ. Group
Place of publishing:London
Publication type:Article
Language:English
Date of first publication:2022/04/28
Publication year:2022
Release date:2024/04/05
Volume:12
Issue:5
Number of pages:18
First page:477
Last Page:484
Funding institution:Universitat Potsdam
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Geowissenschaften
DDC classification:5 Naturwissenschaften und Mathematik / 55 Geowissenschaften, Geologie / 550 Geowissenschaften
Peer review:Referiert
Publishing method:Open Access / Hybrid Open-Access
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.