• search hit 25 of 41
Back to Result List

Impact of the receiver fault distribution on aftershock activity

  • Aftershock models are usually based either on purely empirical relations ignoring the physical mechanism or on deterministic calculations of stress changes on a predefined receiver fault orientation. Here we investigate the effect of considering more realistic fault systems in models based on static Coulomb stress changes. For that purpose, we perform earthquake simulations with elastic half-space stress interactions, rate-and-state dependent frictional earthquake nucleation, and extended ruptures with heterogeneous (fractal) slip distributions. We find that the consideration of earthquake nucleation on multiple receiver fault orientations does not influence the shape of the temporal Omori-type aftershock decay, but changes significantly the predicted spatial patterns and the total number of triggered events. So-called stress shadows with decreased activity almost vanish, and activation decays continuously with increasing distance from the main shock rupture. The total aftershock productivity, which is shown to be almost independentAftershock models are usually based either on purely empirical relations ignoring the physical mechanism or on deterministic calculations of stress changes on a predefined receiver fault orientation. Here we investigate the effect of considering more realistic fault systems in models based on static Coulomb stress changes. For that purpose, we perform earthquake simulations with elastic half-space stress interactions, rate-and-state dependent frictional earthquake nucleation, and extended ruptures with heterogeneous (fractal) slip distributions. We find that the consideration of earthquake nucleation on multiple receiver fault orientations does not influence the shape of the temporal Omori-type aftershock decay, but changes significantly the predicted spatial patterns and the total number of triggered events. So-called stress shadows with decreased activity almost vanish, and activation decays continuously with increasing distance from the main shock rupture. The total aftershock productivity, which is shown to be almost independent of the assumed background rate, increases significantly if multiple receiver fault planes exist. The application to the 1992 M7.3 Landers, California, aftershock sequence indicates a good agreement with the locations and the total productivity of the observed directly triggered aftershocks.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Sebastian HainzlORCiDGND, Gert ZöllerORCiDGND, Rongjiang Wang
URL:http://www.agu.org/journals/jb/
DOI:https://doi.org/10.1029/2008jb006224
ISSN:0148-0227
Publication type:Article
Language:English
Year of first publication:2010
Publication year:2010
Release date:2017/03/25
Source:Journal of geophysical research : solid earth. - ISSN 0148-0227. - 115 (2010), Art. B05315
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Mathematik
Peer review:Referiert
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.