### Refine

#### Year of publication

#### Document Type

- Article (14)
- Conference Proceeding (1)
- Doctoral Thesis (1)
- Habilitation (1)

#### Keywords

- Bayesian (1)
- Datenanalyse (1)
- Earthquake interaction (1)
- Erdbeben (1)
- Erdbebenvorhersage (1)
- Fault slip (1)
- Geodetic measurements (1)
- Multigrid (1)
- Multiple time stepping (1)
- Seismicity and tectonics (1)

Both aftershocks and geodetically measured postseismic displacements are important markers of the stress relaxation process following large earthquakes. Postseismic displacements can be related to creep-like relaxation in the vicinity of the coseismic rupture by means of inversion methods. However, the results of slip inversions are typically non-unique and subject to large uncertainties. Therefore, we explore the possibility to improve inversions by mechanical constraints. In particular, we take into account the physical understanding that postseismic deformation is stress-driven, and occurs in the coseismically stressed zone. We do joint inversions for coseismic and postseismic slip in a Bayesian framework in the case of the 2004 M6.0 Parkfield earthquake. We perform a number of inversions with different constraints, and calculate their statistical significance. According to information criteria, the best result is preferably related to a physically reasonable model constrained by the stress-condition (namely postseismic creep is driven by coseismic stress) and the condition that coseismic slip and large aftershocks are disjunct. This model explains 97% of the coseismic displacements and 91% of the postseismic displacements during day 1-5 following the Parkfield event, respectively. It indicates that the major postseismic deformation can be generally explained by a stress relaxation process for the Parkfield case. This result also indicates that the data to constrain the coseismic slip model could be enriched postseismically. For the 2004 Parkfield event, we additionally observe asymmetric relaxation process at the two sides of the fault, which can be explained by material contrast ratio across the fault of similar to 1.15 in seismic velocity.

Convergence of the frequency-magnitude distribution of global earthquakes - maybe in 200 years
(2013)

I study the ability to estimate the tail of the frequency-magnitude distribution of global earthquakes. While power-law scaling for small earthquakes is accepted by support of data, the tail remains speculative. In a recent study, Bell et al. (2013) claim that the frequency-magnitude distribution of global earthquakes converges to a tapered Pareto distribution. I show that this finding results from data fitting errors, namely from the biased maximum likelihood estimation of the corner magnitude theta in strongly undersampled models. In particular, the estimation of theta depends solely on the few largest events in the catalog. Taking this into account, I compare various state-of-the-art models for the global frequency-magnitude distribution. After discarding undersampled models, the remaining ones, including the unbounded Gutenberg-Richter distribution, perform all equally well and are, therefore, indistinguishable. Convergence to a specific distribution, if it ever takes place, requires about 200 years homogeneous recording of global seismicity, at least.

We show how the maximum magnitude within a predefined future time horizon may be estimated from an earthquake catalog within the context of Gutenberg-Richter statistics. The aim is to carry out a rigorous uncertainty assessment, and calculate precise confidence intervals based on an imposed level of confidence a. In detail, we present a model for the estimation of the maximum magnitude to occur in a time interval T-f in the future, given a complete earthquake catalog for a time period T in the past and, if available, paleoseismic events. For this goal, we solely assume that earthquakes follow a stationary Poisson process in time with unknown productivity Lambda and obey the Gutenberg-Richter law in magnitude domain with unknown b-value. The random variables. and b are estimated by means of Bayes theorem with noninformative prior distributions. Results based on synthetic catalogs and on retrospective calculations of historic catalogs from the highly active area of Japan and the low-seismicity, but high-risk region lower Rhine embayment (LRE) in Germany indicate that the estimated magnitudes are close to the true values. Finally, we discuss whether the techniques can be extended to meet the safety requirements for critical facilities such as nuclear power plants. For this aim, the maximum magnitude for all times has to be considered. In agreement with earlier work, we find that this parameter is not a useful quantity from the viewpoint of statistical inference.

We develop a multigrid, multiple time stepping scheme to reduce computational efforts for calculating complex stress interactions in a strike-slip 2D planar fault for the simulation of seismicity. The key elements of the multilevel solver are separation of length scale, grid-coarsening, and hierarchy. In this study the complex stress interactions are split into two parts: the first with a small contribution is computed on a coarse level, and the rest for strong interactions is on a fine level. This partition leads to a significant reduction of the number of computations. The reduction of complexity is even enhanced by combining the multigrid with multiple time stepping. Computational efficiency is enhanced by a factor of 10 while retaining a reasonable accuracy, compared to the original full matrix-vortex multiplication. The accuracy of solution and computational efficiency depend on a given cut-off radius that splits multiplications into the two parts. The multigrid scheme is constructed in such a way that it conserves stress in the entire half-space.

Stress drop is a key factor in earthquake mechanics and engineering seismology. However, stress drop calculations based on fault slip can be significantly biased, particularly due to subjectively determined smoothing conditions in the traditional least-square slip inversion. In this study, we introduce a mechanically constrained Bayesian approach to simultaneously invert for fault slip and stress drop based on geodetic measurements. A Gaussian distribution for stress drop is implemented in the inversion as a prior. We have done several synthetic tests to evaluate the stability and reliability of the inversion approach, considering different fault discretization, fault geometries, utilized datasets, and variability of the slip direction, respectively. We finally apply the approach to the 2010 M8.8 Maule earthquake and invert for the coseismic slip and stress drop simultaneously. Two fault geometries from the literature are tested. Our results indicate that the derived slip models based on both fault geometries are similar, showing major slip north of the hypocenter and relatively weak slip in the south, as indicated in the slip models of other studies. The derived mean stress drop is 5-6 MPa, which is close to the stress drop of similar to 7 MPa that was independently determined according to force balance in this region Luttrell et al. (J Geophys Res, 2011). These findings indicate that stress drop values can be consistently extracted from geodetic data.

In this study, we analyze acoustic emission (AE) data recorded at the Morsleben salt mine, Germany, to assess the catalog completeness, which plays an important role in any seismicity analysis. We introduce the new concept of a magnitude completeness interval consisting of a maximum magnitude of completeness (M-c(max)) in addition to the well-known minimum magnitude of completeness. This is required to describe the completeness of the catalog, both for the smallest events (for which the detection performance may be low) and for the largest ones (which may be missed because of sensors saturation). We suggest a method to compute the maximum magnitude of completeness and calculate it for a spatial grid based on (1) the prior estimation of saturation magnitude at each sensor, (2) the correction of the detection probability function at each sensor, including a drop in the detection performance when it saturates, and (3) the combination of detection probabilities of all sensors to obtain the network detection performance. The method is tested using about 130,000 AE events recorded in a period of five weeks, with sources confined within a small depth interval, and an example of the spatial distribution of M-c(max) is derived. The comparison between the spatial distribution of M-c(max) and of the maximum possible magnitude (M-max), which is here derived using a recently introduced Bayesian approach, indicates that M-max exceeds M-c(max) in some parts of the mine. This suggests that some large and important events may be missed in the catalog, which could lead to a bias in the hazard evaluation.

Time-dependent probabilistic seismic hazard assessment requires a stochastic description of earthquake occurrences. While short-term seismicity models are well-constrained by observations, the recurrences of characteristic on-fault earthquakes are only derived from theoretical considerations, uncertain palaeo-events or proxy data. Despite the involved uncertainties and complexity, simple statistical models for a quasi-period recurrence of on-fault events are implemented in seismic hazard assessments. To test the applicability of statistical models, such as the Brownian relaxation oscillator or the stress release model, we perform a systematic comparison with deterministic simulations based on rate- and state-dependent friction, high-resolution representations of fault systems and quasi-dynamic rupture propagation. For the specific fault network of the Lower Rhine Embayment, Germany, we run both stochastic and deterministic model simulations based on the same fault geometries and stress interactions. Our results indicate that the stochastic simulators are able to reproduce the first-order characteristics of the major earthquakes on isolated faults as well as for coupled faults with moderate stress interactions. However, we find that all tested statistical models fail to reproduce the characteristics of strongly coupled faults, because multisegment rupturing resulting from a spatiotemporally correlated stress field is underestimated in the stochastic simulators. Our results suggest that stochastic models have to be extended by multirupture probability distributions to provide more reliable results.

The occurrence of earthquakes is characterized by a high degree of spatiotemporal complexity. Although numerous patterns, e.g. fore- and aftershock sequences, are well-known, the underlying mechanisms are not observable and thus not understood. Because the recurrence times of large earthquakes are usually decades or centuries, the number of such events in corresponding data sets is too small to draw conclusions with reasonable statistical significance. Therefore, the present study combines both, numerical modeling and analysis of real data in order to unveil the relationships between physical mechanisms and observational quantities. The key hypothesis is the validity of the so-called "critical point concept" for earthquakes, which assumes large earthquakes to occur as phase transitions in a spatially extended many-particle system, similar to percolation models. New concepts are developed to detect critical states in simulated and in natural data sets. The results indicate that important features of seismicity like the frequency-size distribution and the temporal clustering of earthquakes depend on frictional and structural fault parameters. In particular, the degree of quenched spatial disorder (the "roughness") of a fault zone determines whether large earthquakes occur quasiperiodically or more clustered. This illustrates the power of numerical models in order to identify regions in parameter space, which are relevant for natural seismicity. The critical point concept is verified for both, synthetic and natural seismicity, in terms of a critical state which precedes a large earthquake: a gradual roughening of the (unobservable) stress field leads to a scale-free (observable) frequency-size distribution. Furthermore, the growth of the spatial correlation length and the acceleration of the seismic energy release prior to large events is found. The predictive power of these precursors is, however, limited. Instead of forecasting time, location, and magnitude of individual events, a contribution to a broad multiparameter approach is encouraging.