The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 43 of 56967
Back to Result List

Time Complexity Analysis of Evolutionary Algorithms on Random Satisfiable k-CNF Formulas

  • We contribute to the theoretical understanding of randomized search heuristics by investigating their optimization behavior on satisfiable random k-satisfiability instances both in the planted solution model and the uniform model conditional on satisfiability. Denoting the number of variables by n, our main technical result is that the simple () evolutionary algorithm with high probability finds a satisfying assignment in time when the clause-variable density is at least logarithmic. For low density instances, evolutionary algorithms seem to be less effective, and all we can show is a subexponential upper bound on the runtime for densities below . We complement these mathematical results with numerical experiments on a broader density spectrum. They indicate that, indeed, the () EA is less efficient on lower densities. Our experiments also suggest that the implicit constants hidden in our main runtime guarantee are low. Our main result extends and considerably improves the result obtained by Sutton and Neumann (Lect Notes Comput SciWe contribute to the theoretical understanding of randomized search heuristics by investigating their optimization behavior on satisfiable random k-satisfiability instances both in the planted solution model and the uniform model conditional on satisfiability. Denoting the number of variables by n, our main technical result is that the simple () evolutionary algorithm with high probability finds a satisfying assignment in time when the clause-variable density is at least logarithmic. For low density instances, evolutionary algorithms seem to be less effective, and all we can show is a subexponential upper bound on the runtime for densities below . We complement these mathematical results with numerical experiments on a broader density spectrum. They indicate that, indeed, the () EA is less efficient on lower densities. Our experiments also suggest that the implicit constants hidden in our main runtime guarantee are low. Our main result extends and considerably improves the result obtained by Sutton and Neumann (Lect Notes Comput Sci 8672:942-951, 2014) in terms of runtime, minimum density, and clause length. These improvements are made possible by establishing a close fitness-distance correlation in certain parts of the search space. This approach might be of independent interest and could be useful for other average-case analyses of randomized search heuristics. While the notion of a fitness-distance correlation has been around for a long time, to the best of our knowledge, this is the first time that fitness-distance correlation is explicitly used to rigorously prove a performance statement for an evolutionary algorithm.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Benjamin DoerrORCiDGND, Frank Neumann, Andrew M. SuttonORCiD
DOI:https://doi.org/10.1007/s00453-016-0190-3
ISSN:0178-4617
ISSN:1432-0541
Title of parent work (English):Algorithmica : an international journal in computer science
Publisher:Springer
Place of publishing:New York
Publication type:Article
Language:English
Date of first publication:2016/08/29
Publication year:2016
Release date:2022/05/09
Tag:Fitness-distance correlation; Runtime analysis; Satisfiability
Volume:78
Number of pages:26
First page:561
Last Page:586
Funding institution:Australian Research Council (ARC) [DP140103400]; European Union [618091]
Organizational units:An-Institute / Hasso-Plattner-Institut für Digital Engineering gGmbH
DDC classification:0 Informatik, Informationswissenschaft, allgemeine Werke / 00 Informatik, Wissen, Systeme / 004 Datenverarbeitung; Informatik
Peer review:Referiert
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.