The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 62 of 56972
Back to Result List

Dielectric materials for electro-active (electret) and/or electro-passive (insulation) applications

  • Dielectric materials for electret applications usually have to contain a quasi-permanent space charge or dipole polarization that is stable over large temperature ranges and time periods. For electrical-insulation applications, on the other hand, a quasi-permanent space charge or dipole polarization is usually considered detrimental. In recent years, however, with the advent of high-voltage direct-current (HVDC) transmission and high-voltage capacitors for energy storage, new possibilities are being explored in the area of high-voltage dielectrics. Stable charge trapping (as e.g. found in nano-dielectrics) or large dipole polarizations (as e.g. found in relaxor ferroelectrics and high-permittivity dielectrics) are no longer considered to be necessarily detrimental in electrical-insulation materials. On the other hand, recent developments in electro-electrets (dielectric elastomers), i.e. very soft dielectrics with large actuation strains and high breakdown fields, and in ferroelectrets, i.e. polymers with electrically chargedDielectric materials for electret applications usually have to contain a quasi-permanent space charge or dipole polarization that is stable over large temperature ranges and time periods. For electrical-insulation applications, on the other hand, a quasi-permanent space charge or dipole polarization is usually considered detrimental. In recent years, however, with the advent of high-voltage direct-current (HVDC) transmission and high-voltage capacitors for energy storage, new possibilities are being explored in the area of high-voltage dielectrics. Stable charge trapping (as e.g. found in nano-dielectrics) or large dipole polarizations (as e.g. found in relaxor ferroelectrics and high-permittivity dielectrics) are no longer considered to be necessarily detrimental in electrical-insulation materials. On the other hand, recent developments in electro-electrets (dielectric elastomers), i.e. very soft dielectrics with large actuation strains and high breakdown fields, and in ferroelectrets, i.e. polymers with electrically charged cavities, have resulted in new electret materials that may also be useful for HVDC insulation systems. Furthermore, 2-dimensional (nano-particles on surfaces or interfaces) and 3-dimensional (nano-particles in the bulk) nano-dielectrics have been found to provide very good charge-trapping properties that may not only be used for more stable electrets and ferroelectrets, but also for better HVDC electrical-insulation materials with the possibility to optimize charge-transport and field-gradient behavior. In view of these and other recent developments, a first attempt will be made to review a small selection of electro-active (i.e. electret) and electro-passive (i.e. insulation) dielectrics in direct comparison. Such a comparative approach may lead to synergies in materials concepts and research methods that will benefit both areas. Furthermore, electrets may be very useful for sensing and monitoring applications in electrical-insulation systems, while high-voltage technology is essential for more efficient charging and poling of electret materials.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Reimund GerhardORCiDGND
DOI:https://doi.org/10.1109/ICEMPE.2019.8727276
ISBN:978-1-5386-8434-4
ISBN:978-1-5386-8435-1
Title of parent work (English):2nd International Conference on Electrical Materials and Power Equipment (ICEMPE 2019)
Publisher:IEEE
Place of publishing:New York
Publication type:Other
Language:English
Date of first publication:2019/06/03
Publication year:2019
Release date:2021/05/03
Tag:Charge storage and transport; Charging or poling; Dielectric materials; Electrets; Electrical insulation; Electro-active and electro-passive dielectrics; Nano-dielectrics
Number of pages:6
First page:91
Last Page:96
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Physik und Astronomie
DDC classification:5 Naturwissenschaften und Mathematik / 53 Physik / 530 Physik
Peer review:Referiert
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.