• Treffer 1 von 4
Zurück zur Trefferliste

On the origin of open-circuit voltage losses in flexible n-i-p perovskite solar cells

  • The possibility to manufacture perovskite solar cells (PSCs) at low temperatures paves the way to flexible and lightweight photovoltaic (PV) devices manufactured via high-throughput roll-to-roll processes. In order to achieve higher power conversion efficiencies, it is necessary to approach the radiative limit via suppression of non-radiative recombination losses. Herein, we performed a systematic voltage loss analysis for a typical low-temperature processed, flexible PSC in n-i-p configuration using vacuum deposited C-60 as electron transport layer (ETL) and two-step hybrid vacuum-solution deposition for CH3NH3PbI3 perovskite absorber. We identified the ETL/absorber interface as a bottleneck in relation to non-radiative recombination losses, the quasi-Fermi level splitting (QFLS) decreases from similar to 1.23 eV for the bare absorber, just similar to 90 meV below the radiative limit, to similar to 1.10 eV when C-60 is used as ETL. To effectively mitigate these voltage losses, we investigated different interfacial modifications viaThe possibility to manufacture perovskite solar cells (PSCs) at low temperatures paves the way to flexible and lightweight photovoltaic (PV) devices manufactured via high-throughput roll-to-roll processes. In order to achieve higher power conversion efficiencies, it is necessary to approach the radiative limit via suppression of non-radiative recombination losses. Herein, we performed a systematic voltage loss analysis for a typical low-temperature processed, flexible PSC in n-i-p configuration using vacuum deposited C-60 as electron transport layer (ETL) and two-step hybrid vacuum-solution deposition for CH3NH3PbI3 perovskite absorber. We identified the ETL/absorber interface as a bottleneck in relation to non-radiative recombination losses, the quasi-Fermi level splitting (QFLS) decreases from similar to 1.23 eV for the bare absorber, just similar to 90 meV below the radiative limit, to similar to 1.10 eV when C-60 is used as ETL. To effectively mitigate these voltage losses, we investigated different interfacial modifications via vacuum deposited interlayers (BCP, B4PyMPM, 3TPYMB, and LiF). An improvement in QFLS of similar to 30-40 meV is observed after interlayer deposition and confirmed by comparable improvements in the open-circuit voltage after implementation of these interfacial modifications in flexible PSCs. Further investigations on absorber/hole transport layer (HTL) interface point out the detrimental role of dopants in Spiro-OMeTAD film (widely employed HTL in the community) as recombination centers upon oxidation and light exposure. [GRAPHICS] .zeige mehrzeige weniger

Volltext Dateien herunterladen

  • pmnr1110.pdfeng
    (2223KB)

    SHA-1: b0911bf382692a48a0bb5f06502c2bffa3444e74

Metadaten exportieren

Weitere Dienste

Suche bei Google Scholar Statistik - Anzahl der Zugriffe auf das Dokument
Metadaten
Verfasserangaben:Stefano Pisoni, Martin StolterfohtORCiD, Johannes Lockinger, Thierry Moser, Yan Jiang, Pietro CaprioglioORCiD, Dieter NeherORCiDGND, Stephan BuechelerORCiD, Ayodhya N. Tiwari
URN:urn:nbn:de:kobv:517-opus4-459617
DOI:https://doi.org/10.25932/publishup-45961
ISSN:1866-8372
Pubmed ID:https://pubmed.ncbi.nlm.nih.gov/31447957
Titel des übergeordneten Werks (Deutsch):Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe
Schriftenreihe (Bandnummer):Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe (1110)
Publikationstyp:Postprint
Sprache:Englisch
Datum der Erstveröffentlichung:28.01.2021
Erscheinungsjahr:2019
Veröffentlichende Institution:Universität Potsdam
Datum der Freischaltung:28.01.2021
Freies Schlagwort / Tag:Perovskite solar cell; flexible; interface engineering; non-radiative recombination; quasi-Fermi level splitting
Ausgabe:1110
Seitenanzahl:12
Quelle:Science and Technology of Advanced Materials 20 (2019) 1, pp. 786-795 DOI: 10.1080/14686996.2019.1633952
Fördernde Institution:Swiss National Science Foundation (SNF)-NRP70Swiss National Science Foundation (SNSF); Swiss National Science Foundation (SNF)-PV2050Swiss National Science Foundation (SNSF) [407040_153976, 407040_153916]; SNF-NanoTera; Swiss Federal Office of Energy [SYNERGY: 20NA21_150950]; NanoTera (project Synergy Gateway); FP7 APPOLO project [609355]
Organisationseinheiten:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Physik und Astronomie
DDC-Klassifikation:6 Technik, Medizin, angewandte Wissenschaften / 69 Hausbau, Bauhandwerk / 690 Hausbau, Bauhandwerk
Peer Review:Referiert
Publikationsweg:Open Access
Open Access / Green Open-Access
Fördermittelquelle:Taylor & Francis Open Access Agreement
Lizenz (Deutsch):License LogoCC-BY - Namensnennung 4.0 International
Externe Anmerkung:Bibliographieeintrag der Originalveröffentlichung/Quelle
Verstanden ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.