• search hit 1 of 1
Back to Result List

Hydrological and climatological controls on radiocarbon concentrations in a tropical stalagmite

  • Precisely-dated stalagmites are increasingly important archives for the reconstruction of terrestrial paleoclimate at very high temporal resolution. In-depth understanding of local conditions at the cave site and of the processes driving stalagmite deposition is of paramount importance for interpreting proxy signals incorporated in stalagmite carbonate. Here we present a sub-decadally resolved dead carbon fraction (DCF) record for a stalagmite from Yok Balum Cave (southern Belize). The record is coupled to parallel stable carbon isotope (delta C-13) and U/Ca measurements, as well as radiocarbon (C-14) measurements from soils overlying the cave system. Using a karst carbon cycle model we disentangle the importance of soil and karst processes on stalagmite DCF incorporation, revealing a dominant host rock dissolution control on total DCF. Covariation between DCF, delta C-13, and U/Ca indicates that karst processes are a common driver of all three parameters, suggesting possible use of delta C-13 and trace element ratios to independentlyPrecisely-dated stalagmites are increasingly important archives for the reconstruction of terrestrial paleoclimate at very high temporal resolution. In-depth understanding of local conditions at the cave site and of the processes driving stalagmite deposition is of paramount importance for interpreting proxy signals incorporated in stalagmite carbonate. Here we present a sub-decadally resolved dead carbon fraction (DCF) record for a stalagmite from Yok Balum Cave (southern Belize). The record is coupled to parallel stable carbon isotope (delta C-13) and U/Ca measurements, as well as radiocarbon (C-14) measurements from soils overlying the cave system. Using a karst carbon cycle model we disentangle the importance of soil and karst processes on stalagmite DCF incorporation, revealing a dominant host rock dissolution control on total DCF. Covariation between DCF, delta C-13, and U/Ca indicates that karst processes are a common driver of all three parameters, suggesting possible use of delta C-13 and trace element ratios to independently quantify DCF variability. A statistically significant multi-decadal lag of variable length exists between DCF and reconstructed solar activity, suggesting that solar activity influenced regional precipitation in Mesoamerica over the past 1500 years, but that the relationship was non-static. Although the precise nature of the observed lag is unclear, solar-induced changes in North Atlantic oceanic and atmospheric dynamics may play a role. (C) 2016 Elsevier Ltd. All rights reserved.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Franziska A. Lechleitner, James U. L. Baldini, Sebastian Franz Martin BreitenbachGND, Jens Bernd FohlmeisterGND, Cameron McIntyre, Bedartha GoswamiORCiDGND, Robert A. Jamieson, Tessa S. van der Voort, Keith Prufer, Norbert MarwanORCiDGND, Brendan J. Culleton, Douglas J. Kennett, Yemane Asmerom, Victor Polyak, Timothy I. Eglinton
DOI:https://doi.org/10.1016/j.gca.2016.08.039
ISSN:0016-7037
ISSN:1872-9533
Title of parent work (English):Geochimica et cosmochimica acta : journal of the Geochemical Society and the Meteoritical Society
Publisher:Elsevier
Place of publishing:Oxford
Publication type:Article
Language:English
Year of first publication:2016
Publication year:2016
Release date:2020/03/22
Tag:Hydroclimate; Radiocarbon; Stalagmite; Trace elements; Tropics
Volume:194
Number of pages:20
First page:233
Last Page:252
Funding institution:European Research Council [240167]; European Union [691037]
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Physik und Astronomie
Mathematisch-Naturwissenschaftliche Fakultät / Institut für Geowissenschaften
Peer review:Referiert
Institution name at the time of the publication:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Erd- und Umweltwissenschaften
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.