• Treffer 3 von 4
Zurück zur Trefferliste

Sensing and Responding of Cardiomyocytes to Changes of Tissue Stiffness in the Diseased Heart

  • Cardiomyocytes are permanently exposed to mechanical stimulation due to cardiac contractility. Passive myocardial stiffness is a crucial factor, which defines the physiological ventricular compliance and volume of diastolic filling with blood. Heart diseases often present with increased myocardial stiffness, for instance when fibrotic changes modify the composition of the cardiac extracellular matrix (ECM). Consequently, the ventricle loses its compliance, and the diastolic blood volume is reduced. Recent advances in the field of cardiac mechanobiology revealed that disease-related environmental stiffness changes cause severe alterations in cardiomyocyte cellular behavior and function. Here, we review the molecular mechanotransduction pathways that enable cardiomyocytes to sense stiffness changes and translate those into an altered gene expression. We will also summarize current knowledge about when myocardial stiffness increases in the diseased heart. Sophisticated in vitro studies revealed functional changes, when cardiomyocytesCardiomyocytes are permanently exposed to mechanical stimulation due to cardiac contractility. Passive myocardial stiffness is a crucial factor, which defines the physiological ventricular compliance and volume of diastolic filling with blood. Heart diseases often present with increased myocardial stiffness, for instance when fibrotic changes modify the composition of the cardiac extracellular matrix (ECM). Consequently, the ventricle loses its compliance, and the diastolic blood volume is reduced. Recent advances in the field of cardiac mechanobiology revealed that disease-related environmental stiffness changes cause severe alterations in cardiomyocyte cellular behavior and function. Here, we review the molecular mechanotransduction pathways that enable cardiomyocytes to sense stiffness changes and translate those into an altered gene expression. We will also summarize current knowledge about when myocardial stiffness increases in the diseased heart. Sophisticated in vitro studies revealed functional changes, when cardiomyocytes faced a stiffer matrix. Finally, we will highlight recent studies that described modulations of cardiac stiffness and thus myocardial performance in vivo. Mechanobiology research is just at the cusp of systematic investigations related to mechanical changes in the diseased heart but what is known already makes way for new therapeutic approaches in regenerative biology.zeige mehrzeige weniger

Volltext Dateien herunterladen

  • pmnr1234.pdfeng
    (2725KB)

    SHA-512:e9bc3245c9f771a36f284d8a2dc50763a347f458b501b45b871839003dc9afbff77332943d840841aa20b22a97ad86b6bfb65ea5a5b9ffcf65bebfd0c20d2278

Metadaten exportieren

Weitere Dienste

Suche bei Google Scholar Statistik - Anzahl der Zugriffe auf das Dokument
Metadaten
Verfasserangaben:Juliane MünchORCiD, Salim Abdelilah-SeyfriedORCiDGND
URN:urn:nbn:de:kobv:517-opus4-545805
DOI:https://doi.org/10.25932/publishup-54580
ISSN:1866-8372
Titel des übergeordneten Werks (Deutsch):Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe
Schriftenreihe (Bandnummer):Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe (1234)
Publikationstyp:Postprint
Sprache:Englisch
Datum der Erstveröffentlichung:31.03.2022
Erscheinungsjahr:2021
Veröffentlichende Institution:Universität Potsdam
Datum der Freischaltung:31.03.2022
Freies Schlagwort / Tag:agrin; cardiomyocyte; collagen; extracellular matrix; heart regeneration; mechanobiology; tissue stiffness; titin
Aufsatznummer:642840
Seitenanzahl:15
Quelle:Frontiers in Cell Developmental Biology 9 (2021) 642840 DOI: 10.3389/fcell.2021.642840
Organisationseinheiten:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Biochemie und Biologie
DDC-Klassifikation:5 Naturwissenschaften und Mathematik / 57 Biowissenschaften; Biologie / 570 Biowissenschaften; Biologie
Peer Review:Referiert
Publikationsweg:Open Access / Green Open-Access
Lizenz (Deutsch):License LogoCC-BY - Namensnennung 4.0 International
Externe Anmerkung:Bibliographieeintrag der Originalveröffentlichung/Quelle
Verstanden ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.