The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 3 of 5
Back to Result List

Trade-off for survival

  • The environmental micmbiota is increasingly exposed to chemical pollution. While the emergence of multi-resistant pathogens is recognized as a global challenge, our understanding of antimicrobial resistance (AMR) development from native microbiomes and the risks associated with chemical exposure is limited. By implementing a lichen as a bioindicator organism and model for a native microbiome, we systematically examined responses towards antimicrobials (colistin, tetracycline, glyphosate, and alkylpyrazine). Despite an unexpectedly high resilience, we identified potential evolutionary consequences of chemical exposure in terms of composition and functioning of native bacterial communities. Major shifts in bacterial composition were observed due to replacement of naturally abundant taxa; e.g. Chthoniobacterales by Pseudomonadales. A general response, which comprised activation of intrinsic resistance and parallel reduction of metabolic activity at RNA and protein levels was deciphered by a multi-omics approach. Targeted analyses of keyThe environmental micmbiota is increasingly exposed to chemical pollution. While the emergence of multi-resistant pathogens is recognized as a global challenge, our understanding of antimicrobial resistance (AMR) development from native microbiomes and the risks associated with chemical exposure is limited. By implementing a lichen as a bioindicator organism and model for a native microbiome, we systematically examined responses towards antimicrobials (colistin, tetracycline, glyphosate, and alkylpyrazine). Despite an unexpectedly high resilience, we identified potential evolutionary consequences of chemical exposure in terms of composition and functioning of native bacterial communities. Major shifts in bacterial composition were observed due to replacement of naturally abundant taxa; e.g. Chthoniobacterales by Pseudomonadales. A general response, which comprised activation of intrinsic resistance and parallel reduction of metabolic activity at RNA and protein levels was deciphered by a multi-omics approach. Targeted analyses of key taxa based on metagenome-assembled genomes reflected these responses but also revealed diversified strategies of their players. Chemical-specific responses were also observed, e.g., glyphosate enriched bacterial r-strategists and activated distinct ARGs. Our work demonstrates that the high resilience of the native micmbiota toward antimicrobial exposure is not only explained by the presence of antibiotic resistance genes but also adapted metabolic activity as a trade-off for survival. Moreover, our results highlight the importance of native microbiomes as important but so far neglected AMR reservoirs. We expect that this phenomenon is representative for a wide range of environmental microbiota exposed to chemicals that potentially contribute to the emergence of antibiotic-resistant bacteria from natural environments.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Wisnu Adi Wicaksono, Maria Braun, Jörg Bernhardt, Katharina Riedel, Tomislav Cernava, Gabriele BergORCiDGND
DOI:https://doi.org/10.1016/j.envint.2022.107474
ISSN:1873-6750
Pubmed ID:https://pubmed.ncbi.nlm.nih.gov/35988321
Title of parent work (English):Environment international : a journal of science, technology, health, monitoring and policy
Subtitle (English):microbiome response to chemical exposure combines activation of intrinsic resistances and adapted metabolic activity
Publisher:Elsevier Science
Place of publishing:Amsterdam [u.a.]
Publication type:Article
Language:English
Date of first publication:2022/10/01
Publication year:2022
Release date:2023/11/13
Volume:168
Article number:107474
Number of pages:13
Funding institution:FWF (Austrian Science Fund); federal state government of Styria; [P29285-BBL]
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Biochemie und Biologie
DDC classification:6 Technik, Medizin, angewandte Wissenschaften / 60 Technik / 600 Technik, Technologie
6 Technik, Medizin, angewandte Wissenschaften / 61 Medizin und Gesundheit / 610 Medizin und Gesundheit
6 Technik, Medizin, angewandte Wissenschaften / 69 Hausbau, Bauhandwerk / 690 Hausbau, Bauhandwerk
Peer review:Referiert
Publishing method:Open Access / Hybrid Open-Access
License (German):License LogoCC-BY - Namensnennung 4.0 International
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.