The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 1 of 42
Back to Result List

Interplay of diffusio- and thermo-osmotic flows generated by single light stimulus

  • Flow control is a highly relevant topic for micromanipulation of colloidal particles in microfluidic applications. Here, we report on a system that combines two-surface bound flows emanating from thermo-osmotic and diffusio-osmotic mechanisms. These opposing flows are generated at a gold surface immersed into an aqueous solution containing a photo-sensitive surfactant, which is irradiated by a focused UV laser beam. At low power of incoming light, diffusio-osmotic flow due to local photo-isomerization of the surfactant dominates, resulting in a flow pattern oriented away from the irradiated area. In contrast, thermo-osmotic flow takes over due to local heating of the gold surface at larger power, consequently inducing a flow pointing toward the hotspot. In this way, this system allows one to reversibly switch from outward to inward liquid flow with an intermittent range of zero flow at which tracer particles undergo thermal motion by just tuning the laser intensity only. Our work, thus, demonstrates an optofluidic system for flowFlow control is a highly relevant topic for micromanipulation of colloidal particles in microfluidic applications. Here, we report on a system that combines two-surface bound flows emanating from thermo-osmotic and diffusio-osmotic mechanisms. These opposing flows are generated at a gold surface immersed into an aqueous solution containing a photo-sensitive surfactant, which is irradiated by a focused UV laser beam. At low power of incoming light, diffusio-osmotic flow due to local photo-isomerization of the surfactant dominates, resulting in a flow pattern oriented away from the irradiated area. In contrast, thermo-osmotic flow takes over due to local heating of the gold surface at larger power, consequently inducing a flow pointing toward the hotspot. In this way, this system allows one to reversibly switch from outward to inward liquid flow with an intermittent range of zero flow at which tracer particles undergo thermal motion by just tuning the laser intensity only. Our work, thus, demonstrates an optofluidic system for flow generation with a high degree of controllability that is necessary to transport particles precisely to desired locations, thereby opening innovative possibilities to generate advanced microfluidic applications.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Valeriia Muraveva, Marek BekirORCiDGND, Nino Lomadze, Robert GroßmannORCiD, Carsten BetaORCiDGND, Svetlana SanterORCiDGND
DOI:https://doi.org/10.1063/5.0090229
ISSN:0003-6951
ISSN:1077-3118
Title of parent work (English):Applied physics letters
Publisher:American Institute of Physics
Place of publishing:Melville
Publication type:Article
Language:English
Date of first publication:2022/06/07
Publication year:2022
Release date:2023/01/05
Volume:120
Issue:23
Article number:231905
Number of pages:5
Funding institution:DFG, Germany [SA1657/18-1]; International Max Planck Research School on; Multiscale Bio-Systems (IMPRS), Potsdam, Germany
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Physik und Astronomie
DDC classification:5 Naturwissenschaften und Mathematik / 53 Physik / 530 Physik
Peer review:Referiert
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.