• Treffer 3 von 3
Zurück zur Trefferliste

25.1% high-efficiency monolithic perovskite silicon tandem solar cell with a high bandgap perovskite absorber

  • Monolithic perovskite silicon tandem solar cells can overcome the theoretical efficiency limit of silicon solar cells. This requires an optimum bandgap, high quantum efficiency, and high stability of the perovskite. Herein, a silicon heterojunction bottom cell is combined with a perovskite top cell, with an optimum bandgap of 1.68 eV in planar p-i-n tandem configuration. A methylammonium-free FA(0.75)Cs(0.25)Pb(I0.8Br0.2)(3) perovskite with high Cs content is investigated for improved stability. A 10% molarity increase to 1.1 m of the perovskite precursor solution results in approximate to 75 nm thicker absorber layers and 0.7 mA cm(-2) higher short-circuit current density. With the optimized absorber, tandem devices reach a high fill factor of 80% and up to 25.1% certified efficiency. The unencapsulated tandem device shows an efficiency improvement of 2.3% (absolute) over 5 months, showing the robustness of the absorber against degradation. Moreover, a photoluminescence quantum yield analysis reveals that with adapted chargeMonolithic perovskite silicon tandem solar cells can overcome the theoretical efficiency limit of silicon solar cells. This requires an optimum bandgap, high quantum efficiency, and high stability of the perovskite. Herein, a silicon heterojunction bottom cell is combined with a perovskite top cell, with an optimum bandgap of 1.68 eV in planar p-i-n tandem configuration. A methylammonium-free FA(0.75)Cs(0.25)Pb(I0.8Br0.2)(3) perovskite with high Cs content is investigated for improved stability. A 10% molarity increase to 1.1 m of the perovskite precursor solution results in approximate to 75 nm thicker absorber layers and 0.7 mA cm(-2) higher short-circuit current density. With the optimized absorber, tandem devices reach a high fill factor of 80% and up to 25.1% certified efficiency. The unencapsulated tandem device shows an efficiency improvement of 2.3% (absolute) over 5 months, showing the robustness of the absorber against degradation. Moreover, a photoluminescence quantum yield analysis reveals that with adapted charge transport materials and surface passivation, along with improved antireflection measures, the high bandgap perovskite absorber has the potential for 30% tandem efficiency in the near future.zeige mehrzeige weniger

Volltext Dateien herunterladen

  • pmnr1197.pdfeng
    (4801KB)

    SHA-5121d8af7d4ae930eb0f2fc547857b3a6f05f9706fa886020cd4698c341eef614f4c844d600e35109752f7e3e69b376a9c3cc86b14e73b002cbf6c0b2523035a0fb

Metadaten exportieren

Weitere Dienste

Suche bei Google Scholar Statistik - Anzahl der Zugriffe auf das Dokument
Metadaten
Verfasserangaben:Patricia S. C. SchulzeORCiDGND, Alexander J. BettORCiDGND, Martin BivourGND, Pietro CaprioglioORCiDGND, Fabian M. Gerspacher, Özde Ş. KabaklıORCiD, Armin Richter, Martin StolterfohtORCiD, Qinxin Zhang, Dieter NeherORCiDGND, Martin HermleORCiDGND, Harald HillebrechtORCiDGND, Stefan W. GlunzORCiDGND, Jan Christoph GoldschmidtORCiDGND
URN:urn:nbn:de:kobv:517-opus4-525668
DOI:https://doi.org/10.25932/publishup-52566
ISSN:1866-8372
Titel des übergeordneten Werks (Deutsch):Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe
Schriftenreihe (Bandnummer):Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe (1197)
Publikationstyp:Postprint
Sprache:Englisch
Datum der Erstveröffentlichung:20.03.2020
Erscheinungsjahr:2020
Veröffentlichende Institution:Universität Potsdam
Datum der Freischaltung:10.11.2021
Freies Schlagwort / Tag:heterojunction silicon solar cells; interfaces; perovskite solar cells; tandem solar cells; thin films
Ausgabe:7
Aufsatznummer:2000152
Seitenanzahl:12
Quelle:Sol. RRL, 4: 2000152. https://doi.org/10.1002/solr.202000152
Organisationseinheiten:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Physik und Astronomie
DDC-Klassifikation:5 Naturwissenschaften und Mathematik / 53 Physik / 530 Physik
Peer Review:Referiert
Publikationsweg:Open Access / Green Open-Access
Lizenz (Deutsch):License LogoCC-BY-NC-ND - Namensnennung, nicht kommerziell, keine Bearbeitungen 4.0 International
Externe Anmerkung:Bibliographieeintrag der Originalveröffentlichung/Quelle
Verstanden ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.