• Treffer 5 von 20
Zurück zur Trefferliste

Remote sensing quantifies widespread abundance of permafrost region disturbances across the Arctic and Subarctic

  • Local observations indicate that climate change and shifting disturbance regimes are causing permafrost degradation. However, the occurrence and distribution of permafrost region disturbances (PRDs) remain poorly resolved across the Arctic and Subarctic. Here we quantify the abundance and distribution of three primary PRDs using time-series analysis of 30-m resolution Landsat imagery from 1999 to 2014. Our dataset spans four continental-scale transects in North America and Eurasia, covering ~10% of the permafrost region. Lake area loss (−1.45%) dominated the study domain with enhanced losses occurring at the boundary between discontinuous and continuous permafrost regions. Fires were the most extensive PRD across boreal regions (6.59%), but in tundra regions (0.63%) limited to Alaska. Retrogressive thaw slumps were abundant but highly localized (<10−5%). Our analysis synergizes the global-scale importance of PRDs. The findings highlight the need to include PRDs in next-generation land surface models to project the permafrost carbonLocal observations indicate that climate change and shifting disturbance regimes are causing permafrost degradation. However, the occurrence and distribution of permafrost region disturbances (PRDs) remain poorly resolved across the Arctic and Subarctic. Here we quantify the abundance and distribution of three primary PRDs using time-series analysis of 30-m resolution Landsat imagery from 1999 to 2014. Our dataset spans four continental-scale transects in North America and Eurasia, covering ~10% of the permafrost region. Lake area loss (−1.45%) dominated the study domain with enhanced losses occurring at the boundary between discontinuous and continuous permafrost regions. Fires were the most extensive PRD across boreal regions (6.59%), but in tundra regions (0.63%) limited to Alaska. Retrogressive thaw slumps were abundant but highly localized (<10−5%). Our analysis synergizes the global-scale importance of PRDs. The findings highlight the need to include PRDs in next-generation land surface models to project the permafrost carbon feedback.zeige mehrzeige weniger

Volltext Dateien herunterladen

  • pmnr799.pdfdeu
    (5236KB)

    SHA-1:f039291f16a41907bb6be319494ed0f113bc8767

Metadaten exportieren

Weitere Dienste

Suche bei Google Scholar Statistik - Anzahl der Zugriffe auf das Dokument
Metadaten
Verfasserangaben:Ingmar NitzeORCiDGND, Guido GrosseORCiDGND, Benjamin M. JonesORCiD, Vladimir E. RomanovskyORCiD, Julia BoikeORCiDGND
URN:urn:nbn:de:kobv:517-opus4-426171
DOI:https://doi.org/10.25932/publishup-42617
ISSN:1866-8372
Titel des übergeordneten Werks (Englisch):Postprints der Universität Potsdam Mathematisch-Naturwissenschaftliche Reihe
Schriftenreihe (Bandnummer):Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe (799)
Publikationstyp:Postprint
Sprache:Englisch
Datum der Erstveröffentlichung:17.12.2019
Erscheinungsjahr:2019
Veröffentlichende Institution:Universität Potsdam
Datum der Freischaltung:17.12.2019
Freies Schlagwort / Tag:Carbon cycle; Climate change; Cryospheric science; Environmental sciences
Ausgabe:799
Seitenanzahl:11
Quelle:Nature Communications 10 (2019) Art. 472 DOI: 10.1038/s41467-019-08375-y
Organisationseinheiten:Mathematisch-Naturwissenschaftliche Fakultät
DDC-Klassifikation:5 Naturwissenschaften und Mathematik / 50 Naturwissenschaften / 500 Naturwissenschaften und Mathematik
Peer Review:Referiert
Publikationsweg:Open Access
Lizenz (Deutsch):License LogoCC-BY - Namensnennung 4.0 International
Externe Anmerkung:Bibliographieeintrag der Originalveröffentlichung/Quelle
Verstanden ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.