• Treffer 3 von 3
Zurück zur Trefferliste

Three-Dimensional Bioelectrodes Utilizing Graphene Based Bioink

  • Enzyme immobilization using nanomaterials offers new approaches to enhanced bioelectrochemical performance and is essential for the preparation of bioelectrodes with high reproducibility and low cost. In this report, we describe the development of new three-dimensional (3D) bioelectrodes by immobilizing a "bioink" of glucose oxidase (GOD) in a matrix of reduced graphene oxides (RGOs), polyethylenimine (PEI), and ferrocene carboxylic acid (FcCOOH) on carbon paper (CP). CP with 3D interwoven carbon fibers serves as a solid porous and electronically conducting skeleton, providing large surface areas and space for loading the bioink and diffusion of substrate molecules, respectively. RGO enhances contact between the GOD-matrix and CP, maintaining high conductivity. The composition of the bioink has been systematically optimized. The GOD bioelectrodes show linearly increasing electrocatalytic oxidation current toward glucose concentration up to 48 mM. A hybrid enzymatic biofuel cell equipped with the GOD bioelectrode as a bioanode and aEnzyme immobilization using nanomaterials offers new approaches to enhanced bioelectrochemical performance and is essential for the preparation of bioelectrodes with high reproducibility and low cost. In this report, we describe the development of new three-dimensional (3D) bioelectrodes by immobilizing a "bioink" of glucose oxidase (GOD) in a matrix of reduced graphene oxides (RGOs), polyethylenimine (PEI), and ferrocene carboxylic acid (FcCOOH) on carbon paper (CP). CP with 3D interwoven carbon fibers serves as a solid porous and electronically conducting skeleton, providing large surface areas and space for loading the bioink and diffusion of substrate molecules, respectively. RGO enhances contact between the GOD-matrix and CP, maintaining high conductivity. The composition of the bioink has been systematically optimized. The GOD bioelectrodes show linearly increasing electrocatalytic oxidation current toward glucose concentration up to 48 mM. A hybrid enzymatic biofuel cell equipped with the GOD bioelectrode as a bioanode and a platinum cathode furthermore registers a maximum power density of 5.1 mu W cm(-2) and an open circuit voltage of 0.40 V at 25 degrees C. The new method reported of preparing a bioelectrode by drop-casting the bioink onto the substrate electrode is facile and versatile, with the potential of application also for other enzymatic bioelectrodes.zeige mehrzeige weniger

Metadaten exportieren

Weitere Dienste

Suche bei Google Scholar Statistik - Anzahl der Zugriffe auf das Dokument
Metadaten
Verfasserangaben:Rebecka Maria Larsen Werchmeister, Jing Tang, Xinxin XiaoORCiD, Ulla WollenbergerORCiDGND, Hans Aage Hjuler, Jens UlstrupORCiD, Jingdong ZhangORCiD
DOI:https://doi.org/10.1149/2.0261916jes
ISSN:0013-4651
ISSN:1945-7111
Titel des übergeordneten Werks (Englisch):Journal of The Electrochemical Society
Verlag:The Electrochemical Society
Verlagsort:Pennington
Publikationstyp:Wissenschaftlicher Artikel
Sprache:Englisch
Jahr der Erstveröffentlichung:2019
Erscheinungsjahr:2019
Datum der Freischaltung:14.09.2020
Band:166
Ausgabe:16
Seitenanzahl:8
Erste Seite:G170
Letzte Seite:G177
Fördernde Institution:Danish Council for Independent ResearchDet Frie Forskningsrad (DFF) [DFF 4093-00297]; Carlsberg foundationCarlsberg Foundation [2012_01_0520]; Russian Science FoundationRussian Science Foundation (RSF) [17-13-01274]; European UnionEuropean Union (EU) [713683]; Deutsche Excellence Strategy -EXC 2008/1German Research Foundation (DFG) [390540038]
Organisationseinheiten:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Biochemie und Biologie
DDC-Klassifikation:5 Naturwissenschaften und Mathematik / 57 Biowissenschaften; Biologie / 570 Biowissenschaften; Biologie
Peer Review:Referiert
Verstanden ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.