• Treffer 3 von 2231
Zurück zur Trefferliste

Band gap engineering in two-dimensional materials by functionalization

  • Graphene is well-knownfor its unique combination of electricaland mechanical properties. However, its vanishing band gap limitsthe use of graphene in microelectronics. Covalent functionalizationof graphene has been a common approach to address this critical issueand introduce a band gap. In this Article, we systematically analyzethe functionalization of single-layer graphene (SLG) and bilayer graphene(BLG) with methyl (CH3) using periodic density functionaltheory (DFT) at the PBE+D3 level of theory. We also include a comparisonof methylated single-layer and bilayer graphene, as well as a discussionof different methylation options (radicalic, cationic, and anionic).For SLG, methyl coverages ranging from 1/8 to 1/1, (i.e.,the fully methylated analogue of graphane) are considered. We findthat up to a coverage theta of 1/2, graphene readily accepts CH3, with neighbor CH3 groups preferring trans positions. Above theta = 1/2, the tendency to accept further CH3 weakens and the lattice constant increases. The band gapbehaves less regularly,Graphene is well-knownfor its unique combination of electricaland mechanical properties. However, its vanishing band gap limitsthe use of graphene in microelectronics. Covalent functionalizationof graphene has been a common approach to address this critical issueand introduce a band gap. In this Article, we systematically analyzethe functionalization of single-layer graphene (SLG) and bilayer graphene(BLG) with methyl (CH3) using periodic density functionaltheory (DFT) at the PBE+D3 level of theory. We also include a comparisonof methylated single-layer and bilayer graphene, as well as a discussionof different methylation options (radicalic, cationic, and anionic).For SLG, methyl coverages ranging from 1/8 to 1/1, (i.e.,the fully methylated analogue of graphane) are considered. We findthat up to a coverage theta of 1/2, graphene readily accepts CH3, with neighbor CH3 groups preferring trans positions. Above theta = 1/2, the tendency to accept further CH3 weakens and the lattice constant increases. The band gapbehaves less regularly, but overall it increases with increasing methylcoverage. Thus, methylated graphene shows potential for developingband gap-tuned microelectronics devices and may offer further functionalizationoptions. To guide in the interpretation of methylation experiments,vibrational signatures of various species are characterized by normal-modeanalysis (NMA), their vibrational density of states (VDOS), and infrared(IR) spectra, the latter two are obtained from ab initio moleculardynamics (AIMD) in combination with a velocity-velocity autocorrelationfunction (VVAF) approach.zeige mehrzeige weniger

Metadaten exportieren

Weitere Dienste

Suche bei Google Scholar Statistik - Anzahl der Zugriffe auf das Dokument
Metadaten
Verfasserangaben:Elham MazareiORCiD, Christopher PenschkeORCiDGND, Peter SaalfrankORCiDGND
DOI:https://doi.org/10.1021/acsomega.3c02068
ISSN:2470-1343
Pubmed ID:https://pubmed.ncbi.nlm.nih.gov/37360460
Titel des übergeordneten Werks (Englisch):ACS Omega
Untertitel (Englisch):Methylation of graphene and graphene bilayers
Verlag:American Chemical Society
Verlagsort:Washington
Publikationstyp:Wissenschaftlicher Artikel
Sprache:Englisch
Datum der Erstveröffentlichung:05.07.2023
Erscheinungsjahr:2023
Datum der Freischaltung:20.06.2024
Freies Schlagwort / Tag:Adsorption; Alkyls; Band structure; Electrical conductivity; Two dimensional materials
Band:8
Ausgabe:24
Seitenanzahl:16
Erste Seite:22026
Letzte Seite:22041
Fördernde Institution:Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under; Germany's Excellence Strategy [EXC 2008/1-390540038, Sa 548/18-1,; 491466077]
Organisationseinheiten:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Chemie
DDC-Klassifikation:5 Naturwissenschaften und Mathematik / 54 Chemie / 540 Chemie und zugeordnete Wissenschaften
6 Technik, Medizin, angewandte Wissenschaften / 66 Chemische Verfahrenstechnik / 660 Chemische Verfahrenstechnik
Peer Review:Referiert
Fördermittelquelle:Publikationsfonds der Universität Potsdam
Publikationsweg:Open Access / Gold Open-Access
DOAJ gelistet
Lizenz (Deutsch):License LogoCC-BY-NC-ND - Namensnennung, nicht kommerziell, keine Bearbeitungen 4.0 International
Verstanden ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.